CS425 [CSE424/ECE428 — Distributed Systems — Fall 2011

Consensus

Material derived from slides by I. Gupta, M. Harandi,
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya

2011-09-08 Nikita Borisov - UIUC

Give 1t a thought

Have you ever wondered why software vendors
always only offer solutions that promise five-9" s
reliability, seven-g’ s reliability, but never 100%
reliability?

The fault does not lie with Microsoft Corp. or
Apple Inc. or Cisco

The fault lies in the impossibility of consensus

2011-09-08 Nikita Borisov - UIUC 2

Consensus: Example

Proposal: move CS425 exam date up from
Dec 16t
Consensus needed

All students must be OK with new date (input)

Everyone must know the final decision
(agreement)

2011-09-08 Nikita Borisov - UIUC 3

What is Consensus?

N processes
Each process p has
input variable x, : initially eithero or1
output variable y,, : initially b (b=undecided) — can be
changed only once
Consensus problem: design a protocol so that

either
all non-faulty processes set their output variables to o

Or non-faulty all processes set their output variables
to1

There is at least one initial state that leads to each
outcomes 1 and 2 above

2011-09-08 Nikita Borisov - UIUC 4

Solve Consensus!

Uh, what's the model? (assumptions!)
Processes fail only by crash-stopping
Synchronous system: bounds on
Message delays
Max time for each process step

e.g., multiprocessor (common clock across
pProcessors)

Asynchronous system: no such bounds!
e.g., The Internet! The Web!

2011-09-08 Nikita Borisov - UIUC

Consensus in Synchronous Systems

For a system with at most f processes crashing, the
algorithm proceeds in f+1 rounds (with timeout), using
basic multicast (B-multicast).
Values': the set of proposed values known to process p=P,
at the beglnnlng of roundr.
Initially Valves®; = {} ; Valuesl- = {Vi=X}
F%r round r = 1 to f£1 do
multicast (Values",)
Values 1, & Values',
for each V; recelved
Values ™1 = Values™!; U V;
end
end o
y,=d; = minimum(Values’!)

2011-09-08 Nikita Borisov - UIUC 6

Why does the Algorithm Work?

Proof by contradiction.

Assume that two non-faulty processes differ in their final
set of values.

Suppose p; and p; are these processes.

Assume that p. possesses a value v that p; does not
pOSsess.

- In the last round, some third process, p,, sent v to p,, and
crashed before sendlng vtop;

—> Any process sending v in the penultimate round must have
crashed; otherwise, both p, and p; should have received v.

—> Proceeding in this way, we infer at least one crash in each of
the preceding rounds.

- But we have assumed at most f crashes can occur and there
are f+1 rounds ==> contradiction.

2011-09-08 Nikita Borisov - UIUC 7

Consensus In an Asynchronous

System

Messages have arbitrary delay, processes arbitrarily slow
Impossible to achieve!

even a single failed is enough to avoid the system from reaching
agreement!

a slow process indistinguishable from a crashed process
Impossibility Applies to any protocol that claims to solve
consensus!

Proved in a now-famous result by Fischer, Lynch and
Patterson, 1983 (FLP)

Stopped many distributed system designers dead in their tracks
A lot of claims of “reliability” vanished overnight

2011-09-08 Nikita Borisov - UIUC 8

Each process p has a state

program counter, registers, stack, local variables

input register xp : initially either o or 1

output register yp : initially b (b=undecided)
Consensus Problem: design a protocol so that
either

all non-faulty processes set their output variables to o

Or non-faulty all processes set their output variables
to1

(No trivial solutions allowed)

2011-09-08 Nikita Borisov - UIUC 9

send(p’ ,m)

receive(p’)
may return null

Global Message Buffer

“Network”’

2011-09-08 Nikita Borisov - UIUC 10

Different Definition of “State”

State of a process

Configuration: = Global state. Collection of states, one
per process; and state of the global buffer

Each Event consists atomically of three sub-steps:

receipt of a message by a process (say p), and
processing of message, and

sending out of all necessary messages by p (into the global
message buffer)
Note: this event is different from the Lamport events

Schedule: sequence of events

2011-09-08 Nikita Borisov - UIUC 11

onfiguration

Evente =(p ,m’

Schedule s=(¢’ ,¢’ ")

C’

Evente '=(p '.m’))

\ 4

C”

P »
< >

Eagdivalent
2011-09-08 Nikita Borisov - UIUC 12

Schedule sl
sl and s2 ,
«can each be applied |
toC ’
einvolve :
disjoint sets of 82

receiving processes

2011-09-08 Nikita Borisov - UIUC

Schedule s2

-
-
-
-
-
-
-

13

State Valencies

Let config. C have a set of decision valuesV
reachable from it

If |V| = 2, config. Cis bivalent

If |V| =1, config. Cis said to be o-valent or 1-
valent, as is the case

Bivalent means outcome is unpredictable

2011-09-08 Nikita Borisov - UIUC 14

What we' |l Show

There exists an initial configuration that is
bivalent

Starting from a bivalent config., there is

always another bivalent config. that is
reachable

2011-09-08 Nikita Borisov - UIUC 15

Some initial configuration is bivalent
*Suppose all initial configurations were either O-valent or 1-valent.
*Place all configurations side-by-side, where adjacent configurations
differ in mitial xp value for exactly one process.
*Creates a lattice of states

*There has to be adjacent pair of 1-valent and 0-valent configs.

2011-09-08 Nikita Borisov - UIUC 16

Lemma?2

Some initial configuration is bivalent

*There has to be adjacent pair of 1-valent and 0-valent configs.
et the process p be the one with a different state across these two
configs.

*Now consider the world where process p has crashed
Both these initial configs.

are indistinguishable. But
one gives a 0 decision
value. The other gives a 1
decision value.

2011-09-08 Nikita Borisov - UIUC 17

What we' |l Show

There exists an initial configuration that is
bivalent

Starting from a bivalent config., there is

always another bivalent config. that is
reachable

2011-09-08 Nikita Borisov - UIUC 18

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

2011-09-08 Nikita Borisov - UIUC 19

. A bivalent mitial config.

let e=(p,m) be an applicable
event to the initial config.

, Let C be the set of configs. reachable
. without applying e

2011-09-08 Nikita Borisov - UIUC 20

. A bivalent mitial config.

let e=(p,m) be an applicable
event to the initial config.

Let C be the set of configs. reachable
without applying e

Let D be the set of configs.
obtained by applying single event e

to any config. in C
2011-09-08 Nikita Borisov - UIUC 21

Lemma 3

C

T

bivalent ./ g
/

[don’ t apply
“. event e=(p,m)]

2011-09-08 Nikita Borisov - UIUC 22

Claim. Set D contains a bivalent config.
Proof. By contradiction. That is, suppose D has only o- and 1-

valent states (and no bivalent ones)
There are states Do and D1in D, and Co and C1in C such that

Do is o-valent, D1 is 1-valent
Do=Co foll. by e=(p,m)
D1=Ca foll. by e=(p,m)

And C1 = Co followed by
someevente =(p ,m’)

(why?)

[don’ t apply
event e=(p,m)]

2011-09-08 Nikita Borisov - UIUC 23

(contd.)

e Casel:p isnotp

e Casell: p sameasp

2011-09-08

8/ o8

Nikita Borisov - UIUC

\

Why? (Lemma 1)

But DO 1s then bivalent!

[don’ t apply

\
\
D

W€

«event e=(p,m)]

24

(contd.)

e Casel:p isnotp

e Casell: p same asp

2011-09-08

90

[don’ t

\
\
D

W€

Nikita Borisov -

. event e=(p,m)]

e \
| (e .e) "

sch. s+

appl
bPPY + finite

* deciding run from CO
(1.e., A 1s not bivalent)

* p takes no steps

uBut A 1s then bivalent!

25

2011-09-08 Nikita Borisov - UIUC 26

Putting 1t all Together

Lemma 2: There exists an initial configuration
that is bivalent

Lemma 3: Starting from a bivalent config., there
is always another bivalent config. that is
reachable

Theorem (Impossibility of Consensus): There is
always a run of events in an asynchronous
distributed system (given any algorithm) such
that the group of processes never reaches
consensus (i.e., always stays bivalent)

“The devil’ s advocate always has a way out”

2011-09-08 Nikita Borisov - UIUC 27

Why 1s Consensus Important? —

Many problems in distributed systems are equivalent
to (or harder than) consensus!

Agreement, e.g., on an integer (harder than consensus,
since it can be used to solve consensus) is impossible!

Leader election is impossible!

A leader election algorithm can be designed using a given
consensus algorithm as a black box

A consensus protocol can be designed using a given leader election
algorithm as a black box

Accurate Failure Detection is impossible!

Should I mark a process that has not responded for the last 60
seconds as failed? (It might just be very, very, slow)

Completeness + Accuracy impossible to guarantee

2011-09-08 Nikita Borisov - UIUC 28

Summary

Consensus Problem
agreement in distributed systems
Solution exists in synchronous system model
(e.g., supercomputer)

Impossible to solve in an asynchronous system
(e.g., Internet, Web)

Key idea: with only one process failure and arbitrarily
slow processes, there are always sequences of events for
the system to decide any which way. Regardless of
which consensus algorithm is running underneath.

FLP impossibility proof

2011-09-08 Nikita Borisov - UIUC 29

