CS425/CSE424/ECE428 — Distributed Systems — Fall 2011

Multicast

Material derived from slides by I. Gupta, M. Harandi,
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya

Announcements

Groups for MPs

Two people
Must select by next week
Find a partner:

In class

On newsgroup

Email staff

2011-09-06 Nikita Borisov - UIUC 2

Review Question 1

Consider the following vector timestamps
T1:[1,3,2]
T2:[2,4,2]

How do they compare:
A:T1>T2

B:T1<T2

C:Ta=T2

D: None of the above

2011-09-06 Nikita Borisov - UIUC 3

Review Question 2

Which of these cuts is consistent?
A:1 C: both
B: 2 D: neither

2011-09-06 Nikita Borisov - UIUC 4

Communication Modes in DS

Unicast
One-to-one: Message from pI’OCESS p to pI’OCESS q.

Best effort: message may be delivered, but will be
Intact

Reliable: message will be delivered
Broadcast

One-to-all: Message from process p to all processes

Impractical for large networks
Multicast

One-to-many: “Local” broadcast within a group g of
processes

2011-09-06 Nikita Borisov - UIUC

Objectives

Define multicast properties
Reliability
Ordering
Examine algorithms for reliable and/or
ordered multicast
Readings:
12.4 (4" ed), 15.4 (5" ed)
Optional: 4.5 (4™ ed), 4.4 (5™ ed)

2011-09-06 Nikita Borisov - UIUC 6

2011-09-06 Nikita Borisov - UIUC

Other Examples of Multicast Use

Akamai’s Configuration Management System
(called ACMS) uses a core group of 3-5 servers.
These servers continuously multicast to each
other the latest updates. They use reliable
multicast. After an update is reliably multicast
within this group, it is then sent out to all the
(1000s of) servers Akamai has all over the world.
Air Traffic Control System: orders by one ATC
need to be ordered (and reliable) multicast out
to other ATC's.

Newsgroup servers multicast to each otherina
reliable and ordered manner.

2011-09-06 Nikita Borisov - UIUC

What're we designing in this class

Application
(at process p)

A

multicast 4 multicast

Incoming
messages

2011-09-06 Nikita Borisov - UIUC

Basic Multicast (B-multicast)

A straightforward way to implement B-multicast
is to use a reliable one-to-one send (unicast)
operation:
B-multicast(g,m): for each process p in g, send(p,m).
receive(m): B-deliver(m) at p.
Guarantees?

All processes in g eventually receive every multicast
message...

... aslong as send is reliable
... and no process crashes

2011-09-06 Nikita Borisov - UIUC 10

Reliable Multicast

Integrity: A correct (i.e., non-faulty) process p delivers
a message m at most once.

Agreement: If a correct process delivers message m,
then all the other correct processes in group(m) will
eventually deliver m.

Property of “all or nothing.”
Validity: If a correct process multicasts (sends)
message m, then it will eventually deliver m itself.

Guarantees liveness to the sender.
Validity and agreement together ensure overall
liveness: if some correct process multicasts a message
m, then, all correct processes deliver m too.

2011-09-06 Nikita Borisov - UIUC 11

Reliable R-Multicast Algorithm

On initialization
Received .= {};
For process p to R-multicast message m to group g
B-multicast(g,m);
(p € g is included as destination)
OnB-deliver(m) atprocess q with g = group(m)
if (m € Received):
Received := Received v {m};

if (g = p):
B-multicast(g,m);
R-deliver(m)

S

<]

2011-09-06 Nikita Borisov - UIUC 12

Reliable R-Multicast Algorithm

On initialization
Received .= {};
For process p to R-multicast message m to group g
B-multicast(g,m);
(p € g is included as destination)
OnB-deliver(m) atprocess q with g = group(m)
if (m € Received):
Received := Received v {m};

if (g = p):
B-multicast(g,m);
R-deliver(m)

2011-09-06 Nikita Borisov - UIUC

13

Ordered Multicast

FIFO ordering: If a correct process issues
multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’will have already
delivered m.
Causal ordering: If multicast(g,m) = multicast(g,m’)
then any correct process that delivers m” will have
already delivered m.
Ty||:>ically, —> defined in terms of multicast communication
only
Total ordering: If a correct process delivers message
m before m’(independent of the senders), then any
other correct process that delivers m” will have already
delivered m.

2011-09-06 Nikita Borisov - UIUC 14

Total, FIFO and Causal Ordering

*Totally ordered messages
T,and T,.

*FIFO-related messages F,
and F,.

*Causally related messages Fag
C,and C, F,
I:2

» Causal ordering implies

FIFO ordering \-
* Total ordering does not Time

imply causal ordering.

» Causal ordering does not Cq
imply total ordering.

C
 Hybrid mode: causal-total 2(- | “
ordering, FIFO-total
ordering. |
P1 P2 P3

2011-09-06 Nikita Borisov - UIUC 15

Display From Bulletin Board

Program

Bulletin board: os.interesting
Item |From Subject
23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M .Walker Re: Mach
end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total

2011-09-06 Nikita Borisov - UIUC 16

Providing Ordering Guarantees

(FIFO)

Look at messages from each process in the
order they were sent:

Each process keeps a sequence number for each
other process.
When a message is received, if message # is:

as expected (next sequence), accept
higher than expected, buffer in a queue
lower than expected, reject

2011-09-06 Nikita Borisov - UIUC 17

Implementing FIFO Ordering

Sp_:the number of messages p has sent to g.
qg the sequence number of the latest group-g message p

has delivered from g.
For p to FO-multicast mto g

p increments SP_ by 1.

p “piggy-backs” the value 57 onto the message.

p B-multicasts mto g.
At process p, Upon receipt of m from g with sequence
number S

p checks Whether 5=Ri +1. It so, p FO-delivers m and
increments R9,

If S>Ri +1, p places the message in the hold-back queue until
the mtervenlng messages have been delivered and 5= R9 +1.

2011-09-06 Nikita Borisov - UIUC 18

Hold-back Queue for Arrived

Multicast Messages

Message
processing

IAdeliver

Hold-back

ﬁ Delivery queue

queue
=
N .
When delivery

Incoming
messages

2011-09-06 Nikita Borisov - UIUC 19

Example: FIFO Multicast

Physical Time R
WA @i ? wIN i) Hg il

/

+ 1
ﬂﬂ- L0 Pliln

m&

2011-09-06 Nikita Borisov - UIUC 20

SImI \m-l [

Total Ordering Using a Sequencer

Sequencer = Leader process

1. Algorithm for group member p
On initialization: r , := 0;

To TO-multicast message m to group g
B-multicast(g U { sequencer(g)}, <m, i>);
L i
On B-deliver(<m, i>) with g = group(m)
Place <m, i> in hold-back queue;
On B-deliver(m,,;,, = <“order”, i, §>) with g = group(m ,,.;,,)
wait until <m, i> in hold-back queue and S = r o)

TO-deliver m; // (after deleting it from the hold-back queue)
r, =S8+1;
(.g’ ’

2. Algorithm for sequencer of g
On initialization: s ¢ 0;

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <*“order”, i, sg,>);
s, =5,+1;
5 7= S, l;

2011-09-06 Nikita Borisov - UIUC 21

ISIS algorithm for total ordering

aSes

—p
2P<0\’°€’e *

2011-09-06 Nikita Borisov - UIUC 22

ISIS algorithm for total ordering

Sender multicasts message to everyone
Reply with proposed priority (sequence no.)
Larger than all observed agreed priorities

Larger than any previously proposed (by self) priority
Store message in priority queue

Ordered by priority (proposed or agreed)

Mark message as undeliverable
Sender chooses agreed priority, re-multicasts message
with agreed priority

Maximum of all proposed priorities
Upon receiving agreed (final) priority

Mark message as deliverable

Deliver any deliverable messages at front of priority queue

2011-09-06 Nikita Borisov - UIUC 23

Example: ISIS algorithm

2011-09-06 Nikita Borisov - UIUC 24

Proof of Total Order

For a message m_, consider the first process p that delivers m,
At p, when message m, is at head of priority queue and has been
marked deliverable, let m, be another message that has not yet
Been delivered (i.e., is on the same queue or has not been seen yet
y p)
finalpriority(m,) >=
proposedprlonty(m) >
ﬁnalprlorlty(m)
Suppose there is some other process p’that delivers m, before it
delivers m_. Then at p’,
ﬁnalprlorlty(m)>—
proposedprlorlty(m) >
ﬁnalprlorlty(m)

a contradiction!

2011-09-06 Nikita Borisov - UIUC 25

Causal Ordering using vector

timestamps
Algorithm for group member p; (i = 1,2..., N)

On zmtlalzzation The number of group-g messages

g — — , from process j that have been seen at
V =0 (] 1 2.. N)’ process i so far

To CO-multicast message m to group g
HUBRAUESE
B- multtcasz‘(g, < Vg m>);

On B- delzver(< Vg m>) from P with ¢ = group(m)
place <7<, m> n hold back queue;
wait until VEL1 = VAL + Land VELRT S VEL] (K # j);
CO-deliver m // after removing it from the hold-back queue
VL) = PR+ 1

2011-09-06 Nikita Borisov - UIUC 26

Example: Causal Ordering Multicast

.
>

Physical Time

2011-09-06 Nikita Borisov - UIUC 27

Summary

Multicast is operation of sending one
message to multiple processes in a given
group

Reliable multicast algorithm built using
unicast

Ordering — FIFO, total, causal

2011-09-06 Nikita Borisov - UIUC 28

