
Computer Science
425

Distributed Systems
(Fall 2009)

Lecture 5
Multicast Communication

Reading: Section 12.4
Klara Nahrstedt

Acknowledgement

• The slides during this semester are based on
ideas and material from the following sources:

– Slides prepared by Professors M. Harandi, J. Hou, I. Gupta, N.
Vaidya, Y-Ch. Hu, S. Mitra.

– Slides from Professor S. Gosh’s course at University o Iowa.

Administrative

• Homework 1 posted
– Deadline, September 17 (Thursday)

• MP1 posted today
– Deadline, September 25, Friday

Plan for Today

• Reliable Multicast
• Ordered Multicast

– Total ordering
– Causal ordering
– FIFO ordering

Reliable Multicast
• Integrity: A correct (i.e., non-faulty) process p in a

group(m) delivers a multicast message m at most
once.

– Safety property: any message delivered is identical to the one
that was sent

• Validity: If a correct process multicasts (sends)
message m, then it will eventually deliver m.

– Guarantees liveness to the sender.
– Liveness property: any message is eventually delivered to

destination

• Agreement: If a correct process delivers message
m, then all the other correct processes in
group(m) will eventually deliver m.

– Property of “all or nothing.”
– Validity and agreement together ensure overall liveness: if

some correct process multicasts a message m, then all correct
processes deliver m too.

Reliable Multicast Algorithm R-multicast

B-multicast

reliable unicast

“USES”

“USES”

Reliable Multicast Algorithm (R-multicast)

Integrity

Agreement

if some correct process B-multicasts a message m, then,
all correct processes deliver m too. If no correct process
B-multicasts m, then no correct processes deliver m.

Integrity, Validity

Ordered Multicast

• FIFO ordering: If a correct process issues
multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’ will have already
delivered m.

• Causal ordering: If multicast(g,m) multicast(g,m’)
then any correct process that delivers m’ will have
already delivered m.

• Total ordering: If a correct process delivers
message m before m’, then any other correct
process that delivers m’ will have already delivered
m.

Total, FIFO and Causal Ordering

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

•Totally ordered messages
T1 and T2.
•FIFO-related messages F1
and F2.
•Causally-related
messages C1 and C3

• Causal ordering implies
FIFO ordering
• Total ordering does not
imply causal ordering.
• Causal ordering does not
imply total ordering.
• Hybrid mode: causal-total
ordering, FIFO-total
ordering.

Totally-ordered

FIFO-ordered

Causal-
ordered

Example: Display From Bulletin Board
Program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total

Post to
Bulletin
Board

User 1

Post to
Bulletin
Board

User 2

FIFO-ORDERED MULTICAST

 Process messages from each
process in the order they were sent:
 Each process keeps a sequence

number for each other process.
 Messages are sent with local sequence

number
 When a message is received,

as expected (next sequence), accept

higher than expected, buffer in a queue
lower than expected, reject

Providing Ordering Guarantees (FIFO)

If
Message#
is

Hold-back Queue for Arrived Multicast
Messages: received yet undelivered
messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

FO-deliver

Implementing FIFO Ordering (FIFO-ordered
multicast)

• Sp
g: count of messages p has sent to g.

• Rq
g: the recorded sequence number of the latest message

that p has delivered from q to the group g.
• For p to FO-multicast m to g

– p increments Sp
g by 1

– p “piggy-backs” the value Sp
g onto the message.

– p B-multicasts m to g.

• At process p, upon receipt of m from q with sequence
number S:

– p checks whether S= Rq
g+1. If so, p FO-delivers m and increments Rq

g

– If S > Rq
g+1, p places the message in the hold-back queue until the

intervening messages have been delivered and S= Rq
g+1.

– If S < Rq
g+1, then drop the message (we have already seen the

message)

Example: FIFO Multicast

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

11 1 2 2 1

1

Reject:
1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer
2 > 0 + 1

Accept:
1 = 0 + 1

2 0 0

Accept
Buffer

2 = 1 + 1

Reject: 1
< 1 + 1
Accept

1 = 0 + 1

Sequence Vector for P1

(do NOT confuse with vector timestamps)

0 0 0

S1
g R2

g R3
g

0 0 0

R1
g S2

g R3
g

Sequence Vector for P2

CAUSAL-ORDERED MULTICAST

Causal Multicast

• Let us focus on multicast group g
• Each process iєg maintains a vector Vg

i of length
|g| where

– Vg
i[j] counts the number of group g messages from j to i

• Messages multicast by process i are tagged with
the vector timestamp Vg

i

• Recall rule for receiving vector timestamps
Max(Vreceiver[j] , Vmessage[j]), if j is not self

Vreceiver[j] + 1 otherwise

• i.e. when process i receives a <m,Vg
j> from j, then

– Vg
i[k] = max(Vg

i[k], Vg
j[k]) if k ≠ i

– Vg
i[k] = Vg

i[k] + 1 if k = i

• Remember V(a) < V(b) iff a happens before b

Vreceiver[j] =

Causal Ordering using vector timestamps

The number of group-g messages
from process j that have been seen at
process i so far

Guarantees
Causal ordering

Example: Causal Ordering Multicast

P1

P2

P3

Physical Time

(1,1,0)

Reject:

Accept

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer
missing P1(1)
(1,1,0) >(1,0,0)

1,1,0

1,1,0

1,1,0

Accept

1,0,0

Accept
Buffered
message

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept

TOTAL-ORDERED MULTICAST

1st Method - Using Sequencer

• Delivery algorithm similar to FIFO
• Except that processes maintain group specific

sequence number (as opposed to process
specific sequence number)

• Sender attaches unique id ‘i’ to each message m
and sends <m,i> to the sequencer(g) as well as to
group g

• Sequencer maintains group specific sequence
number Sg (consecutive and increasing) and B-
multicasts order messages to g

Total Ordering Using a Sequencer (Method 1)

P1 sequencer

P3P2

<m,i>

<m,i>

<m,i>

Sg

<order, i, Sg>
<order, i, Sg>

, Sg+1

rg rg

unique msg id

- Single point of failure
- Bottleneck

Group g: P1, P2, P3

Sequencer (g) :

2nd Method - ISIS Algorithm

• Processes collectively agree on sequence
numbers (priority) in three rounds

• Sender sends message m with its id to all
receivers;

• Receivers suggest priority (sequence number)
and reply to sender with proposed priority;

• Sender collects all proposed priorities; decides
on final priority (breaking ties with process ids),
and resends the agreed final priority for message
m

• Receivers deliver message m according to
decided final priority

ISIS algorithm for total ordering (Method 2)

2
1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

Group g: P1, P2, P3, P4

ISIS algorithm for total ordering

1. sender p B-multicasts <m,i> with message m and unique
id i to everyone.

2. On receiving m (first time)
1. m is added to a priority queue and tagged as undeliverable
2. reply to sender with proposed priority, i.e., a sequence number

» seq number = 1 + largest seq number heard so far, suffixed with the recipient’s
process ID

3. priority queue is always sorted by priority

3. Sender
1. collects all responses from the recipients,
2. calculates their maximum, and
3. re-multicasts (B-multicast) original message with this as the final priority for m

4. On receiving m (with final priority)
1. mark the message as deliverable,
2. reorder the priority queue, and
3. deliver the set of lowest priority messages that are marked as deliverable.

Proof of Total Order (By Contradition)

• For m1, consider the first process p that delivers
m1

– At p, let m1 have the agreed sequence number (finalpriority(m1))
and marked deliverable (at the front of the hold-back priority queue)

– Let m2 be another message that has not yet been delivered
» i.e., m2 is on the same queue (it has not been assigned its

sequence number) or has not been seen yet by p
– Then

» finalpriority(m2) ≥ proposedpriority(m2) due to: “max” operation
at sender &

» proposedpriority(m2) ≥ final priority (m1) due to: proposed
priorities by p only increase (m1 is ahead of the queue)

• Suppose there is some other process q that
delivers m2 before it delivers m1. Then at q

– Finalpriority(m1) ≥ proposedpriority(m1) ≥ finalpriority (m2)

• Contradiction !

Summary

• Multicast is operation of sending one message to multiple
processes

– Basic multicast
» Uses reliable unicast
» Guarantees integrity, validity but not agreement

– Reliable multicast
» Uses basic multicast
» Guarantees agreement (no ordering)

• Ordering – FIFO, total, causal
– FIFO-multicast uses sequence number for each process and a queue
– Causal-multicast uses vector time stamps
– Total order- multicast uses a sequencer or agreement on sequence numbers

	Computer Science 425�Distributed Systems�(Fall 2009)
	Acknowledgement
	Administrative
	Plan for Today
	Reliable Multicast
	Reliable Multicast Algorithm
	Reliable Multicast Algorithm (R-multicast)
	Ordered Multicast
	Total, FIFO and Causal Ordering
	Example: Display From Bulletin Board � Program
	FIFO-ordered multicast
	Providing Ordering Guarantees (FIFO)
	Hold-back Queue for Arrived Multicast �Messages: received yet undelivered �messages
	Implementing FIFO Ordering (FIFO-ordered �multicast)
	Example: FIFO Multicast
	Causal-ordered multicast
	Causal Multicast
	Causal Ordering using vector timestamps
	Example: Causal Ordering Multicast
	Total-ordered multicast
	1st Method - Using Sequencer
	Total Ordering Using a Sequencer (Method 1)
	2nd Method - ISIS Algorithm
	ISIS algorithm for total ordering (Method 2)
	ISIS algorithm for total ordering
	Proof of Total Order (By Contradition)
	Summary

