
7/29/2013 1

Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/

The Big Picture

 OCaml/Functional Programming

 Continuation Passing Style

 Type checking/inference

 Unification

 Lexing

 Parsing

 Operational Semantics

 Lambda Calculus

 Hoare Logic
7/29/2013 2

Anatomy of an Interpreter

Program Text

Lexing regular expressions/lex

Token Buffer

Parsing BNF grammar/yacc

AST

Static Semantics
type checking/inference, unification

possibly Hoare Logic!
Correct AST

Dynamic Semantics

Program Output

operational semantics

7/29/2013 3

Anatomy of a Compiler

Program Text

Lexing regular expressions/lex

Token Buffer

Parsing BNF grammar/yacc

AST

Static Semantics
type checking/inference, unification

possibly Hoare Logic!
Correct AST

Translation

IR

denotational semantics

possibly CPS!

Optimization CS 426
Optimized IR

Code Generation

Assembly/Machine Code (or lambda calculus!)

(denotational semantics again)

}
7/29/2013 4

What can we do now?

 Write functional programs (which parallelize
well and compute math quickly)

 Build compilers and interpreters

 Specify and implement programming
languages

 Prove programs correct

 Compare various approaches to PL syntax
and semantics

 7/29/2013 5

Formal Methods

 The study of proving programs correct

 But what is a program?

 Anything we can model formally/mathematically

 Computer programs, machines, workflows

 Compilers, air traffic control protocols, security
protocols, simulators, Java programs

 And how do we prove it correct?

 Syntax, semantics, formal logic,
automatic/interactive provers

7/29/2013 6

Verifying a Compiler

Program Text

Lexing

Token Buffer

Parsing

AST

Static Semantics

Correct AST

Translation

IR

Optimization

Optimized IR

Code Generation

Assembly/Machine Code
7/29/2013 7

“do the same thing”

Verifying a Compiler

Program Text

Lexing

Token Buffer

Parsing

AST

Static Semantics

Correct AST

Translation

IR

Optimization

Optimized IR

Code Generation

Assembly/Machine Code
7/29/2013 8

have the same semantics?

Verifying a Compiler

Program Text

Lexing

Token Buffer

Parsing

AST

Static Semantics

Correct AST

Translation

IR

Optimization

Optimized IR

Code Generation

Assembly/Machine Code
7/29/2013 9

have the same semantics

Verifying a Compiler

Input AST

7/29/2013 10

Output AST

Translation

Semantics

Semantics

prove this!

Input Meaning

Output Meaning

Verifying a Compiler – Example

PicoML AST

7/29/2013 11

Lambda-term

Denotation

PicoML SOS

LC SOS

prove this!

PicoML Value

LC Value

Verifying a Compiler – Example

PicoML AST

7/29/2013 12

Lambda-term

Denotation

PicoML SOS

LC SOS

prove this!

PicoML Value

LC Value

Can we prove this for every program?

Verifying a Compiler – Example

PicoML AST

7/29/2013 13

Lambda-term

Denotation

PicoML SOS

LC SOS

prove this!

PicoML Value

LC Value

Can we prove this for every program? Yes.

Verifying a Compiler – Harder Case

Compiler IR

7/29/2013 14

Compiler IR

Optimization

Semantics

Semantics

prove this!

Input Meaning

Output Meaning

Can we prove this for every program?

Control Flow Graphs

 ASTs are good for complex expressions

 What if we care more about control flow
than expression structure?

 Graphs with commands on nodes, edges
showing control flow

7/29/2013 15

Control Flow Graphs

Entry

x := 1

x := x + 1

goto
x := x - 1

y := x

seq

seq

seq

seq

seq

seq

branch

branch

0: x := 1

1: if x > 0 goto 4

2: x := x + 1

3: goto 5

4: x := x - 1

5: y := x

6: return y return y
seq

Exit

if x > 0

Semantics on Control Flow Graphs

 Configurations are (G, n, m), where G is a
graph and n is the currently executing node

 Small-step for moving between nodes, big-
step within a single node

 E.g. (Assignment Rule):

7/29/2013 17

(G, n, m)  (G, n', m[x  v])

label(G, n) = I := E (E, m) v out(n) = n'

Verifying a Compiler – Harder Case

Input CFG

7/29/2013 18

Output CFG

Optimization

CFG Semantics

CFG Semantics

prove this!

Input Value

Output Value

Questions?

7/29/2013 19

