
7/29/2013 1

Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/

The Big Picture

 OCaml/Functional Programming

 Continuation Passing Style

 Type checking/inference

 Unification

 Lexing

 Parsing

 Operational Semantics

 Lambda Calculus

 Hoare Logic
7/29/2013 2

Anatomy of an Interpreter

Program Text

Lexing regular expressions/lex

Token Buffer

Parsing BNF grammar/yacc

AST

Static Semantics
type checking/inference, unification

possibly Hoare Logic!
Correct AST

Dynamic Semantics

Program Output

operational semantics

7/29/2013 3

Anatomy of a Compiler

Program Text

Lexing regular expressions/lex

Token Buffer

Parsing BNF grammar/yacc

AST

Static Semantics
type checking/inference, unification

possibly Hoare Logic!
Correct AST

Translation

IR

denotational semantics

possibly CPS!

Optimization CS 426
Optimized IR

Code Generation

Assembly/Machine Code (or lambda calculus!)

(denotational semantics again)

}
7/29/2013 4

What can we do now?

 Write functional programs (which parallelize
well and compute math quickly)

 Build compilers and interpreters

 Specify and implement programming
languages

 Prove programs correct

 Compare various approaches to PL syntax
and semantics

 7/29/2013 5

Formal Methods

 The study of proving programs correct

 But what is a program?

 Anything we can model formally/mathematically

 Computer programs, machines, workflows

 Compilers, air traffic control protocols, security
protocols, simulators, Java programs

 And how do we prove it correct?

 Syntax, semantics, formal logic,
automatic/interactive provers

7/29/2013 6

Verifying a Compiler

Program Text

Lexing

Token Buffer

Parsing

AST

Static Semantics

Correct AST

Translation

IR

Optimization

Optimized IR

Code Generation

Assembly/Machine Code
7/29/2013 7

“do the same thing”

Verifying a Compiler

Program Text

Lexing

Token Buffer

Parsing

AST

Static Semantics

Correct AST

Translation

IR

Optimization

Optimized IR

Code Generation

Assembly/Machine Code
7/29/2013 8

have the same semantics?

Verifying a Compiler

Program Text

Lexing

Token Buffer

Parsing

AST

Static Semantics

Correct AST

Translation

IR

Optimization

Optimized IR

Code Generation

Assembly/Machine Code
7/29/2013 9

have the same semantics

Verifying a Compiler

Input AST

7/29/2013 10

Output AST

Translation

Semantics

Semantics

prove this!

Input Meaning

Output Meaning

Verifying a Compiler – Example

PicoML AST

7/29/2013 11

Lambda-term

Denotation

PicoML SOS

LC SOS

prove this!

PicoML Value

LC Value

Verifying a Compiler – Example

PicoML AST

7/29/2013 12

Lambda-term

Denotation

PicoML SOS

LC SOS

prove this!

PicoML Value

LC Value

Can we prove this for every program?

Verifying a Compiler – Example

PicoML AST

7/29/2013 13

Lambda-term

Denotation

PicoML SOS

LC SOS

prove this!

PicoML Value

LC Value

Can we prove this for every program? Yes.

Verifying a Compiler – Harder Case

Compiler IR

7/29/2013 14

Compiler IR

Optimization

Semantics

Semantics

prove this!

Input Meaning

Output Meaning

Can we prove this for every program?

Control Flow Graphs

 ASTs are good for complex expressions

 What if we care more about control flow
than expression structure?

 Graphs with commands on nodes, edges
showing control flow

7/29/2013 15

Control Flow Graphs

Entry

x := 1

x := x + 1

goto
x := x - 1

y := x

seq

seq

seq

seq

seq

seq

branch

branch

0: x := 1

1: if x > 0 goto 4

2: x := x + 1

3: goto 5

4: x := x - 1

5: y := x

6: return y return y
seq

Exit

if x > 0

Semantics on Control Flow Graphs

 Configurations are (G, n, m), where G is a
graph and n is the currently executing node

 Small-step for moving between nodes, big-
step within a single node

 E.g. (Assignment Rule):

7/29/2013 17

(G, n, m) (G, n', m[x v])

label(G, n) = I := E (E, m) v out(n) = n'

Verifying a Compiler – Harder Case

Input CFG

7/29/2013 18

Output CFG

Optimization

CFG Semantics

CFG Semantics

prove this!

Input Value

Output Value

Questions?

7/29/2013 19

