Programming Languages and Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

Floyd-Hoare Logic

- A kind of axiomatic semantics
- Based on predicate logic
- A logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Floyd-Hoare Logic

- Used to formally prove a property (postcondition) of the state after the execution of a program, assuming some property (pre-condition) of the state holds before execution

Floyd-Hoare Logic

- Goal: Derive statements of form \{P\} C \{Q\}
-P, Q logical statements about state, P precondition, Q postcondition, C program
- Example: $\{x=1\} x:=x+1\{x=2\}$

Floyd-Hoare Logic

- Approach: For each kind of language statement, give an axiom or inference rule stating how to derive assertions of form
$\{P\} C\{Q\}$
where C is a statement of that kind
- Compose axioms and inference rules to build proofs for complex programs

Floyd-Hoare Logic

- An expression $\{P\} C$ $\{\mathrm{Q}\}$ is a partial correctness statement
- For total correctness ([P] C [Q]) must also prove that C terminates (i.e. doesn't run forever)
- We'll only consider partial correctness

Language

- We will give rules for our simple imperative language SIMPL
$C::=I:=E|C ; C|$ if B then C else C | while B do C
- Could add more features, like for-loops

The Assignment Rule

$$
\overline{\{P[e / x]\} x:=e ~\{P\}}
$$

Example:

$$
\{?\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\overline{\{P[e / x]\} x:=e ~\{P\}}
$$

Example:

$$
\{\overline{-}=2\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\overline{\{P[e / x]\} x:=e ~\{P\}}
$$

Example:

$$
\{\bar{y}=2\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\overline{\{P[e / x]\} x:=e\{P\}}
$$

Examples:

$$
\begin{aligned}
& \overline{\{y=2\} x:=y\{x=2\}} \\
& \{y=2\} x:=2\{y=x\}
\end{aligned}
$$

$$
\overline{\{x+1=n+1\} x:=x+1 \quad\{x=n+1\}}
$$

$$
\overline{\{2=2\} \times:=2\{x=2\}}
$$

The Assignment Rule - Your Turn

- What precondition should we use for

$$
x:=x+y\{x+y=w-x\} ?
$$

\{
$? \quad\}$
$x:=x+y$
$\{x+y=w-x\}$

The Assignment Rule - Your Turn

- What precondition should we use for

$$
x:=x+y\{x+y=w-x\} ?
$$

$$
\{(x+y)+y=w-(x+y)\}
$$

$$
x:=x+y
$$

$$
\{x+y=w-x\}
$$

Precondition Strengthening

$$
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} C\{Q\}}{\{P\} C Q\}}
$$

- If we can show that P implies P' and $\{P '\} C\{Q\}$, then we know that $\{P\} C\{Q\}$
- P is stronger than P^{\prime} means $\mathrm{P} \rightarrow \mathrm{P}^{\prime}$

Example

How do we prove

$$
\{x=n\} x:=x+1\{x=n+1\}
$$

given

$$
\{P[e / x]\} x:=e\{P\}
$$

Example

How do we prove

$$
\{x=n\} x:=x+1\{x=n+1\}
$$

We have

$$
\{P[e / x]\} x:=e\{P\}
$$

but $(x=n+1)[x+1 / x]$ isn't $x=n$

Example

$$
\frac{x=n \rightarrow x+1=n+1 \quad\{x+1=n+1\} x:=x+1\{x=n+1\}}{\{x=n\} x:=x+1\{x=n+1\}}
$$

Precondition Strengthening

$$
\frac{x=3 \rightarrow x+3<10\{x+3<10\} x:=x+3\{x<10\}}{\{x=3\} x:=x+3\{x<10\}}
$$

$$
\frac{\text { True } \rightarrow 2=2 \quad\{2=2\} x:=2\{x=2\}}{\{\text { True }\} x:=2\{x=2\}}
$$

$$
\frac{x=n \rightarrow x+1=n+1 \quad\{x+1=n+1\} x:=x+1\{x=n+1\}}{\{x=n\} x:=x+1\{x=n+1\}}
$$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
\frac{\{x=3\} x:=x^{*} x\{x<25\}}{\{x>0 \wedge x<5\} x:=x^{*} x\{x<25\}} \\
\frac{\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}}{\{x>0 \wedge x<5\} x:=x^{*} x\{x<25\}}
\end{gathered}
$$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \wedge x<5\} x:=x^{*} x\{x<25\}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
\frac{\{x=3\} x:=x^{*} \times\{x<25\}}{\{x>0 \wedge x<5\} x:=x^{*} x\{x<25\}} \\
\frac{\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}}{\{x>0 \wedge x<5\} x:=x^{*} x\{x<25\}}
\end{gathered}
$$

Sequencing

$$
\frac{\{P\} \mathrm{C}_{1}\{\mathrm{Q}\} \quad\{\mathrm{Q}\} \mathrm{C}_{2}\{\mathrm{R}\}}{\{P\} \mathrm{C}_{1} ; \mathrm{C}_{2}\{\mathrm{R}\}}
$$

Sequencing

$$
\frac{\{P\} \mathrm{C}_{1}\{\mathrm{Q}\} \quad\{\mathrm{Q}\} \mathrm{C}_{2}\{\mathrm{R}\}}{\{P\} \mathrm{C}_{1} ; \mathrm{C}_{2}\{\mathrm{R}\}}
$$

- Example:

$$
\begin{gathered}
\{z=z \wedge z=z\} x:=z\{x=z \wedge z=z\} \\
\{x=z \wedge z=z\} y:=z\{x=z \wedge y=z\}
\end{gathered}
$$

- Note: $\mathrm{C}_{1} ; \mathrm{C}_{2} ; \mathrm{C}_{3}$ can be $\left(\mathrm{C}_{1} ; \mathrm{C}_{2}\right) ; \mathrm{C}_{3}$ or $\mathrm{C}_{1} ;\left(\mathrm{C}_{2} ; \mathrm{C}_{3}\right)$

Postcondition Weakening

$\frac{\{P\} C\left\{Q^{\prime}\right\} \quad Q^{\prime} \rightarrow Q}{\{P\} C\{Q\}}$

Example:

$$
\begin{gathered}
\{z=z \wedge z=z\} x:=z ; y:=z\{x=z \wedge y=z\} \\
x=z \wedge y=z \rightarrow x=y
\end{gathered}
$$

- Lets us summarize the goal of a program

Rule of Consequence

$$
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} C\left\{Q^{\prime}\right\} \quad Q^{\prime} \rightarrow Q}{\{P\} C\{Q\}}
$$

- Combination of Precondition Strengthening and Postcondition Weakening
- Note the direction of the implications!

If Then Else

$$
\frac{\{P \wedge B\} C_{1}\{Q\} \quad\{P \wedge \neg B\} C_{2}\{Q\}}{\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}}
$$

- Example: Want

$$
\begin{gathered}
\{y=a\} \\
\text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \\
\{y=a+|x|\}
\end{gathered}
$$

If Then Else Example

- Example: Want

$$
\{y=a\}
$$

if $x<0$ then $y:=y-x$ else $y:=y+x$

$$
\{y=a+|x|\}
$$

Suffices to show:

$$
\begin{aligned}
& \text { (1) }\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\} \text { and } \\
& \text { (4) }\{y=a \wedge x \geq 0\} y:=y+x\{y=a+|x|\}
\end{aligned}
$$

If Then Else Example

(3) $\quad y=a \wedge x<0 \rightarrow$?
(2)

$$
\{?\} y:=y-x\{y=a+|x|\}
$$

(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$
(1) Reduces to (2) and (3) by Precondition Strengthening

If Then Else Example

(3) $y=a \wedge x \geq 0 \rightarrow y-x=a+|x|$
(2) $\{y-x=a+|x|\} y:=y-x\{y=a+|x|\}$
(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$
(1) Reduces to (2) and (3) by Precondition Strengthening
(2) Follows from assignment axiom
(3) Because $x<0 \rightarrow|x|=-x$

If Then Else Example

(6) $y=a \wedge x \geq 0 \rightarrow y+x=a+|x|$
(5) $\{y+x=a+|x|\} y:=y+x\{y=a+|x|\}$
(4) $\{y=a \wedge x \geq 0\} y:=y+x\{y=a+|x|\}$
(4) Reduces to (5) and (6) by Precondition Strengthening
(5) Follows from assignment axiom
(6) Because $x \geq 0 \rightarrow|x|=x$

Example

(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$
(4) $\frac{\{y=a \wedge x \geq 0\} y:=y+x\{y=a+|x|\}}{\{y=a\}}$
if $\mathrm{x}<0$ then $\mathrm{y}:=\mathrm{y}-\mathrm{x}$ else $\mathrm{y}:=\mathrm{y}+\mathrm{x}$

$$
\{y=a+|x|\}
$$

By the if_then_else rule

While

- We need a rule to be able to make assertions about while loops
- Premise must involve the body
- Let's start with:

While

- The loop may never be executed, so let's try:
$\begin{array}{ccccc}\{\quad ? \quad \mathrm{C} & \text { \{ } \quad \text { ? }\} \\ \{P\} & \text { while } \mathrm{B} \text { do } \mathrm{C}\{\mathrm{P}\}\end{array}$

While

- If all we know is P when we enter the while loop, then we all we know when we enter the body is (P and B)
- P must hold when we finish the loop body:

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P\}}
$$

While

- When the loop is finished, not B also holds
- Final while rule:

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

While

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

- P satisfying this rule is called a loop invariant because it must hold before and after the each iteration of the loop

While

- While rule generally needs to be used together with precondition strengthening and postcondition weakening
- There is NO algorithm for computing the correct P; it requires intuition and an understanding of why the program works

Example

- Let us prove
$\{x \geq 0 \wedge x=a\}$
fact := 1;
while $x>0$ do (fact := fact * $x ; x:=x-1$) \{fact $=a!\}$

Example

- We need to find a condition P that is true both before and after the loop is executed, and such that

$$
P \wedge \neg(x>0) \rightarrow \text { fact }=a!
$$

Example

- First attempt:

$$
\{\mathrm{a}!=\text { fact * }(\mathrm{x}!)\}
$$

- Motivation:
- What we want to compute: a!
- What we have computed: fact which is the sequential product of a down through ($\mathrm{x}+1$)
- What we still need to compute: x!

Example

By post-condition strengthening suffices to show

1. $\{x \geq 0 \wedge x=a\}$
fact := 1;
while $x>0$ do (fact := fact * x ; $\mathrm{x}:=\mathrm{x}-1$)
$\{a!=$ fact * $(x!) \wedge \neg(x>0)\}$
and
2. $a!=$ fact * $(x!) \wedge \neg(x>0) \rightarrow$ fact $=a!$

Problem

2. a ! $=$ fact * $(x!) \wedge \neg(x>0) \rightarrow$? fact $=a$!

- Not true if $x<0$
- Need to know that $x=0$ when loop terminates
- Loop invariant must include info about x
- If we add $x \geq 0$, then we'll have $x=0$ when loop exits

Example

Second try, combine the two:

$$
P=\{a!=\text { fact * }(x!) \wedge x \geq 0\}
$$

Again, suffices to show

1. $\{x \geq 0 \wedge x=a\}$
fact:=1;
while $x>0$ do (fact := fact * $x ; x:=x-1$)
$\{P \wedge \neg(x>0)\}$
and
2. $P \wedge \neg(x>0) \rightarrow$ fact $=a$!

Example

- For 2, we need $a!=$ fact * $(x!) \wedge x \geq 0 \wedge \neg(x>0) \rightarrow$ fact $=a!$
- But $x \geq 0 \wedge \neg(x>0) \rightarrow x=0$ so

$$
\text { fact * }(x!)=\text { fact * }(0!)=\text { fact }
$$

- Therefore $a!=$ fact * $(x!) \wedge x \geq 0 \wedge \neg(x>0) \rightarrow$ fact $=a!$

Example

- For 1, by the sequencing rule it suffices to show

3. $\{x \geq 0 \wedge x=a\}$
fact := 1
$\{a!=$ fact * $(x!) \wedge x \geq 0\}$
And
4. $\{a!=$ fact * $(x!) \wedge x \geq 0\}$
while $x>0$ do
(fact := fact * x; $x:=x-1$)
$\{a!=$ fact * $(x!) \wedge x \geq 0 \wedge \neg(x>0)\}$

Example

- Suffices to show that

$$
\{a!=\text { fact * }(x!) \wedge x \geq 0\}
$$

holds before the while loop is entered and that if

$$
\{(a!=\text { fact * }(x!)) \wedge x \geq 0 \wedge x>0\}
$$

holds before we execute the body of the loop, then

$$
\{(a!=\text { fact * }(x!)) \wedge x \geq 0\}
$$

holds after we execute the body

Example

By the assignment rule, we have

$$
\begin{gathered}
\{a!=1 \text { * }(x!) \wedge x \geq 0\} \\
\text { fact }:=1 \\
\left\{a!=\text { fact }^{*}(x!) \wedge x \geq 0\right\}
\end{gathered}
$$

Therefore, to show (3), by precondition strengthening, it suffices to show

$$
\begin{gathered}
x \geq 0 \wedge x=a \rightarrow \\
a!=1^{*}(x!) \wedge x \geq 0
\end{gathered}
$$

Example

$$
\begin{gathered}
x \geq 0 \wedge x=a \rightarrow \\
a!=1^{*}(x!) \wedge x \geq 0
\end{gathered}
$$

holds because $x=a \rightarrow x!=a!$

Have that $\{a!=$ fact * $(x!) \wedge x \geq 0\}$ holds at the start of the while loop

Example

To show (4):
$\{a!=$ fact * $(x!) \wedge x \geq 0\}$
while $x>0$ do
(fact := fact * $x ; x:=x-1$)
$\{a!=$ fact * $(x!) \wedge x \geq 0 \wedge \neg(x>0)\}$
we need to show that

$$
a!=\text { fact * }(x!) \wedge x \geq 0
$$

is a loop invariant

Example

We need to show:

$$
\begin{gathered}
\{a!=\text { fact * }(x!) \wedge x \geq 0 \wedge x>0\} \\
\left(\text { fact }=\text { fact }^{*} x ; x:=x-1\right) \\
\left\{a!=\text { fact }^{*}(x!) \wedge x \geq 0\right\}
\end{gathered}
$$

We will use assignment rule, sequencing rule and precondition strengthening

Example

By the assignment rule, we have

$$
\begin{gathered}
\left\{a!=\text { fact * }^{((x-1)!) \wedge x-1 \geq 0\}}\right. \\
x:=x-1 \\
\left\{a!=\text { fact }^{*}(x!) \wedge x \geq 0\right\}
\end{gathered}
$$

By the sequencing rule, it suffices to show

$$
\begin{aligned}
& \{a!=\text { fact * }(x!) \wedge x \geq 0 \wedge x>0\} \\
& \text { fact = fact * } x \\
& \{a!=\text { fact * }((x-1)!) \wedge x-1 \geq 0\}
\end{aligned}
$$

Example

By the assignment rule, we have that

$$
\begin{aligned}
& \{a!=(f a c t * x) *((x-1)!) \wedge x-1 \geq 0\} \\
& \text { fact }=\text { fact }{ }^{*} x \\
& \{a!=\text { fact * }((x-1)!) \wedge x-1 \geq 0\}
\end{aligned}
$$

By Precondition strengthening, it suffices to show that
$a!=$ fact * $(x!) \wedge x \geq 0 \wedge x>0 \rightarrow$
$a!=(f a c t ~ * x) ~ * ~((x-1)!) ~ a n d ~ x-1 \geq 0$

Example

However

$$
\text { fact * } x^{*}(x-1)!=\text { fact * } x
$$

and

$$
(x>0) \rightarrow x-1 \geq 0
$$

since x is an integer, so

$$
\begin{gathered}
a!=\text { fact }^{*}(x!) \wedge x \geq 0 \wedge x>0 \rightarrow \\
\left.a!=\left(\text { fact }{ }^{*} x\right)^{*}((x-1)!)\right) \wedge x-1 \geq 0
\end{gathered}
$$

Example

Therefore, by precondition strengthening

$$
\begin{aligned}
& \left\{a!=\text { fact }^{*}(x!) \wedge x \geq 0 \wedge x>0\right\} \\
& \text { fact }=\text { fact }^{*} x \\
& \left\{a!=\text { fact }^{*}((x-1)!) \wedge x-1 \geq 0\right\}
\end{aligned}
$$

QED!

