Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by
Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

7/29/2013

http://courses.engr.illinois.edu/cs421/

i Floyd-Hoare Logic

s A kind of axiomatic semantics

= Based on predicate logic

= A logical system built from axioms and
Inference rules

= Mainly suited to simple imperative
programming languages

7/29/2013

i Floyd-Hoare Logic

= Used to formally prove a property (post-
condition) of the state after the
execution of a program, assuming
some property (pre-condition) of the
state holds before execution

7/29/2013 3

i Floyd-Hoare Logic

s Goal: Derive statements of form

{P} C{Q}
= P, Q logical statements about state,
P precondition, Q postcondition,

C program

s Example: {x=1}x=x+1{x=2}

7/29/2013

i Floyd-Hoare Logic

= Approach: For each kind of language
statement, give an axiom or inference rule
stating how to derive assertions of form

1P} C {Q}

where C Is a statement of that kind

= Compose axioms and inference rules to build
proofs for complex programs

7/29/2013 5

i Floyd-Hoare Logic

= An expression {P} C {Q} Is a partial
correctness statement

= For total correctness ([P] C [Q]) must
also prove that C terminates (l.e.
doesn’t run forever)

= We'll only consider partial correctness

7/29/2013

i Language

= We will give rules for our simple imperative
language SIMPL

C:=Il=E|C;C|ifBthenCelse C
| while B do C

= Could add more features, like for-loops

7/29/2013

i The Assignment Rule

{P [e/X]} x :=e{P}
Example:

{ 7 IX=EYyWX=2;

7/29/2013

i The Assignment Rule

Example:

7/29/2013

{P [e/X]} x :=e{P}

{

_F2IX=Y (XS

2}

i The Assignment Rule

Example:

7/29/2013

{P [e/X]} x :=e{P}

{

y=2}x=y{X=

2}

10

i The Assignment Rule

{Ple/x]} x =e{P}

Examples:
{y=2}x:=y{x=2;
{y=2}x:=2{y =X}

(x+1=n+1}x=x+1 {X=n+ 1}

{2=2}x=2{x=2}

7/29/2013

11

i The Assignment Rule — Your Turn

= What precondition should we use for
X =X+y{X+y=w-—x}7?

{ ? }

X =X+Y
X+Yy=W-=X;

7/29/2013 12

i The Assignment Rule — Your Turn

= What precondition should we use for
X =X+y{X+y=w-—x}7?

{x+y)+ty=w-—(x+y)}

X =X+Y
X+Yy=W-=X;

7/29/2013 13

i Precondition Strengthening

P>P {P}C{Q)
1P} C{Q}

= [f we can show that P implies P’ and
{P’} C {Q}, then we know that {P} C {Q}

= P Is stronger than P' means P = P

7/29/2013 14

i Example

How do we prove

{Xx=n} x:=x+1 {Xx = n+1}
given

{P |e/X] } x = e {P}

7/29/2013

15

i Example

How do we prove
{X=n}x:=x+1 {X = n+l}
We have
{P le/x]} x = e {P}

but(x=n+1)[x+1/x]isntx=n

7/29/2013

16

i Example

X=n =» x+1=n+1 {x+1=n+1}x = x+1 {x=n+1}
{Xx=n}x:=x+1 {Xx = n+l}

7/29/2013 17

i Precondition Strengthening

X=3 =»X+3<10{x+3<10} x :=x + 3 {Xx < 10}

Ix=3}x:=x+3{x<10}

True=>2=2 {2=2}x:=2{x=2}
{True} x =2 {x = 2}

X=n = x+1=n+1 {x+1=n+1} x .= x+1 {x=n+1}
{Xx=n}x:=x+1 {x = n+l}

7/29/2013 18

i Which Inferences Are Correct?

X>0AX<5}x:=x*x{x<25}

IXx=3}Xx:=x*x{x <25}

{X=3} x:=x*x{x <25}

X>0AX<5}x:=x*x{x<25}

X*x<25}x:=x*x{x <25}

X>0AX<5}x:=x*x{x<25}

7/29/2013

19

i Which Inferences Are Correct?

/

X>0AX<5}x:=x*x{x<25}
{x=3} x:=x*x{x <25}

K =3pe=xe fW

C x<5}x = X * XX
/

X*x<25}x:=x*x{x <25}
{X>0AX<5}x:=x*x{x <25}

7/29/2013 20

i Sequencing

P C1QF {Q} G {R}

{P} Cy; C,{R}

7/29/2013

i Sequencing

P C1QF {Q} G {R}
{P}Cy; G, {R}

= Example:
{z=zAz=2}x=z2{Xx=2ZNZ=27}
Ix=zAz=2z2}y=z{XX=zZANy=12}
{z=zAz=2}x =27,y :=z{X=zAy=12}

7/29/2013 22

i Postcondition Weakening

PrCQ Q=20
{P} C {Q}

Example:
{z=zAz=2}x=2z;,y:=z{X=zAy=12}
X=ZZAYy=Z=>X=Y
{z=zANz=2z}x=2Z,y:=z2{X=Y}

= Lets us summarize the goal of a program

7/29/2013 23

i Rule of Consequence

P3P {PIC{Q} Q0Q
{P} C{Q}

= Combination of Precondition Strengthening
and Postcondition Weakening
= Note the direction of the implications!

7/29/2013 24

i If Then Else

P AB}C1Q} {P A -B} Gy {Qj

{P} If B then C, else C, {Q}

= Example: Want

y = a}
fx<Otheny =y—-Xxelsey=y +Xx

y =a+ x|}

7/29/2013

25

i If Then Else Example

= Example: Want
{y = aj
fX<Otheny:=y—-Xxelsey: =y +X
{y =a+|[x]}
Suffices to show:

(D{y=aax<0y:=y-x{y=a+|x]} and
(4){y=aArx20ty:=y+x{y=a+|x|}

7/29/2013 26

i If Then Else Example

(3) y=aAX<0=>?
(2) {7}y =y—-x{y=a+ x|}
(1) {y=aAax<0ty:=y-x{y=a+ x|}

(1) Reduces to (2) and (3) by
Precondition Strengthening

7/29/2013 27

i If Then Else Example

(3) y=aAx20=y-x=a+|X]
(2) {y—x=a+[X}y:=y—-x{y=a+ x|}
(1) {y=aAax<0ty:=y-x{y=a+ x|}

(1) Reduces to (2) and (3) by
Precondition Strengthening

(2) Follows from assignment axiom

(3) Because x <0 = |x| = -x

7/29/2013 28

i If Then Else Example

(6) y=aAx>20=y+x=a+|[X|

O) {ytx=a+[|x}y:=y+x{y=a+|x|}
(4) {y=aAaxz0ty:=y+x{y=a+|x|}

(4) Reduces to (5) and (6) by
Precondition Strengthening

(5) Follows from assignment axiom

(6) Because x > 0 = [x] = x

7/29/2013 29

i Example

(1) {y=aAx<0ty:=y—-x{y=a+|x|}
(4) {y=aAx=20ty:=y+x{y=a+|x|}

{y = aj
fXx<Otheny:=y—-Xxelsey .=y +X
{y=a+ x|}

By the If then_else rule

7/29/2013 30

i While

s We need a rule to be able to make
assertions about while loops

= Premise must involve the body
= Let’s start with:

A S G SR
{ ? } while Bdo C {P}

7/29/2013 31

i While

= The loop may never be executed, so
let’s try:
{ ?2 } C { 7?2 }
{ P} while Bdo C {P}

7/29/2013

32

i While

= If all we know Is P when we enter the while
loop, then we all we know when we enter the
body is (P and B)

= P must hold when we finish the loop body:

{PAB} C {P}
(P} while B do C {P}

7/29/2013 33

i While

= When the loop Is finished, not B also holds
= Final while rule:

(PAB} C (P}
{P}while B do C {PA-B}

7/29/2013 34

iWhiIe
(PAB} C {P)

{P}while B do C {PA-B}

= P satisfying this rule is called a loop
Invariant because it must hold before
and after the each iteration of the loop

7/29/2013 35

i While

= While rule generally needs to be used
together with precondition
strengthening and postcondition
weakening

= There is NO algorithm for computing
the correct P; It requires Intuition and an
understanding of why the program
WOrks

7/29/2013 36

i Example

= Let us prove
{x>0AX=a}
fact .= 1,
while x > 0 do (fact :=fact * x; x :=x—-1)
{fact = al}

7/29/2013

37

i Example

= We need to find a condition P that Is true
both before and after the loop Is executed,
and such that

P A=(x>0)=> fact = a!

7/29/2013

38

i Example

= First attempt:

{al =fact * (x!)}
= Motivation:
= What we want to compute: a!
= What we have computed: fact

which Is the sequential product of a down
through (x + 1)

= What we still need to compute: x!

7/29/2013 39

i Example

By post-condition strengthening suffices to
show

1. x>0Ax=a}
fact .= 1,
while x > 0 do (fact :=fact * x; x ;= x -1)
{al = fact * (x!) A =(x > 0)}

and

2.al =fact* (x!) A =(x > 0) =>» fact = a

7/29/2013

40

i Problem

2. al =fact* (x!) A =(x > 0) =7 fact = a!
= Nottrueifx<0

= Need to know that x = 0 when loop
terminates

= Loop invariant must include info about x

s If we add x > 0, then we’ll have x = 0 when
loop exits

7/29/2013 41

i Example

Second try, combine the two:
P ={al =fact * (x!I) A x > 0}
Again, suffices to show
1. {x=0Ax=a}
fact .= 1,
while x > 0 do (fact :=fact * x; x ;= x -1)
{P A =(x>0)}
and
2. PA-A(x>0)=>fact=al

7/29/2013

42

i Example

s For 2, we need
al=fact* (x!) Ax>0A~(x>0) = fact = a!

s Butx>0A=(x>0)=2>x=0s0
fact * (x!) = fact * (O!) = fact

= Therefore
al=fact*(xX) Ax>0A=(x>0)=>» fact = al

7/29/2013 43

i Example

= For 1, by the sequencing rule it suffices to
show

3.{x>0AXx=a}

fact .= 1
fal=fact* (x!) Ax>0}
And

4. {a! =fact * (x!) A x >0}
while x > 0 do
(fact ;= fact * x; x :==x-1)
{fal =fact * (x!)) A x>0 A =(x > 0)}

7/29/2013

44

i Example

s Suffices to show that
{al = fact * (x!) A x > 0}

holds before the while loop Is entered and
that If

{(@al=fact* (x!)) A x>0 A x>0}

holds before we execute the body of the
loop, then

{(a!l =fact * (x!)) A x > 0}
holds after we execute the body

7/29/2013

45

i Example

By the assignment rule, we have
{fal=1*(x!) A x>0}
fact .= 1
fal = fact * (x!) A x > 0}
Therefore, to show (3), by
precondition strengthening, it suffices
to show
X>20AXx=a=>
=1*(x)Ax=0

7/29/2013 46

i Example

X>0AX=a=>
al=1*(x)Ax=>0
holds because x =a =» x! = al

Have that {a! = fact * (x!) A x > 0}
holds at the start of the while loop

7/29/2013 47

i Example

To show (4):

{a! = fact * (x!) A x > 0}

while x > 0 do

(fact .:=fact * x; x .= x-1)

fal =fact* (x!) Ax>0 A =(x > 0)}
we need to show that

al=fact*(x) Ax>0

IS a loop Iinvariant

7/29/2013

48

i Example

We need to show:
{al =fact* (x!) Ax>0 A x>0}
(fact=fact*x; x :=x—-1)
{al = fact * (x!) A x > 0}

We will use assignment rule,

seguencing rule and precondition
strengthening

7/29/2013

49

i Example

By the assignment rule, we have
{al =fact * (x-1)) Ax—-12>0}
X =x-1
{a! = fact * (x!) A x > O}
By the sequencing rule, it suffices to show
{al =fact* (x!) Ax>0 A x>0}
fact = fact * x
{al = fact * (x-1)) Ax—-1 >0}

7/29/2013 50

i Example

By the assignment rule, we have that

{al = (fact * x) * (x-1))) A x -1 > 0}

fact = fact * x
{al =fact * ((x-1))) Ax—-1 >0}

By Precondition strengthening, it suffices
to show that
al=fact* (X) AX>0AX>0=>
al=(fact*x)*((x—-1))andx—-1>0

7/29/2013

51

i Example

lowever

fact * x * (x — 1)! = fact * X
and Xx>0)=2>x-12>0
since X IS an integer, SO
al=fact* (xX) AX>0AX>0=>
al=(fact*xX)*(x-1))Arx-1>0

7/29/2013

52

i Example

Therefore, by precondition strengthening
{al =fact* (x!) Ax>0 A x>0}
fact = fact * x
{fal=fact*((x—- 1)) Ax—-12=>0}

QED!

7/29/2013

53

