
7/19/2013 1 

Programming Languages and 
Compilers (CS 421) 

William Mansky 

 

http://courses.engr.illinois.edu/cs421/ 

Based in part on slides by Mattox Beckman, as updated by 

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith 

http://courses.engr.illinois.edu/cs421/


Lambda Calculus 

 Aims to capture the essence of functions, 
function applications, and evaluation 

 -calculus is a theory of computation 

 Programs may be viewed as functions from 
input (initial state and input values) to 
output (resulting state and output values) 

 -calculus makes this precise, and provides 
rules for working with functions in general 

 Can be typed or untyped, but we’ll focus on 
untyped 

 7/19/2013 2 



Lambda Calculus: Motivation 

 Typed and untyped -calculus used for 
theoretical study of (sequential) 
programming languages 

 Programming languages can be thought of 
as -calculus + predefined constructs, 
constants, types, syntactic sugar 
(denotational semantics) 

 OCaml is close to the -calculus: 

   fun x -> exp ≡  x. exp 

let x = e1 in e2 ≡ ( x. e2) e1 

7/19/2013 3 



Untyped -calculus 

Only three kinds of expressions: 

Variables: x, y, z, w, … 

Abstraction:   x. e    

   (Function creation, as fun x -> e) 

Application:  e1 e2 

7/19/2013 4 



Untyped -calculus Grammar 

 Formal BNF Grammar: 
 <expression> ::= <variable> 

                           | <abstraction>  
                           | <application> 
                           | (<expression>) 
 <abstraction>  

                       ::= <variable>.<expression>  

 <application>  
                  ::= <expression> <expression> 

7/19/2013 5 



Example 

 Which variables are which? 

 

 

( x.  y. y ( x. x y) x) x 

7/19/2013 6 



Example 

 Which variables are which? 

 

 

( x. y  y. y ( x. x y) x) x 

7/19/2013 7 



Working with Variables 

 Occurrence: a location of a subterm (variable 
or complex term) in a term 

 Variable binding:  x. e is a binding of x to e 
 Bound occurrence: all occurrences of x in    

 x. e  
 Free occurrence: one that is not bound 
 Scope of binding: in  x. e, all occurrences in 

e not in a subterm of the form  x. e’ (same 
x) are in scope of that binding of x 

 Free variables: all variables with free 
occurrences in a term 

7/19/2013 8 



Untyped -calculus 

 How do you compute with the -calculus? 

 Roughly speaking, by substitution: 

( x. e1) e2   e1 [e2 / x] 

 

 Modulo subtleties to avoid free variable 
capture 

7/19/2013 9 



Semantics of Substitution 

 x [e / x] = e 

 y [e / x] = y if y  x 

 

 (e1 e2) [e / x] = ((e1 [e / x] ) (e2 [e / x] )) 

 

 ( x. f) [e / x] = ( x. f)  

 ( y. f) [e / x] =  y. (f [e / x] )  

if y  x and y is not a free variable in e 

 
7/19/2013 10 



Changing Names 

  -conversion: 

 x. e 
𝛼
   y. (e [y/x]) 

 Provided that 

1. y is not free in e 

2. No free occurrence of x in e  
becomes bound when replaced by y 

7/19/2013 11 



-conversion Failure 

1. Error: y is free in term 

   x. x y 
𝛼
   y. y y 

2. Error: free occurrence of x becomes bound 
in wrong way when replaced by y 

  x.  y. x 
𝛼
   y.  y. y 

                                    

But   x. ( y. y) x 
𝛼
   y. ( y. y) y 

and  y. ( y. y) y 
𝛼
   x. ( y. y) x    are okay 

 
7/19/2013 12 



Congruence 

 Let ~ be a relation on lambda terms.   
~ is a congruence if  

 ~ is an equivalence relation (reflexive, 
symmetric, transitive) 

 If e1 ~ e2 then 

  (e e1) ~ (e e2) and (e1 e) ~ (e2 e) 

   x. e1 ~  x. e2 

Congruent terms are “functionally the 
same” in some way 

7/19/2013 13 



 -equivalence 

 -equivalence is the smallest 
congruence containing -conversion 

 i.e., two terms are -equivalent if 
they can be -converted into the 
same term 

 We usually treat -equivalent terms 
as equal 

7/19/2013 14 



Proving  -equivalence 

Show:  x. ( y. y x) x =  y. ( x. x y) y 

  x. ( y. y x) x 
𝛼
   z. ( y. y z) z,  so    

    x. ( y. y x) x =  z. ( y. y z) z 

 ( y. y z) 
𝛼
  ( x. x z),  so                          

   ( y. y z) = ( x. x z) and  

     z. ( y. y z) z =  z. ( x. x z) z 

  z. ( x. x z) z 
𝛼
   y. ( x. x y) y,  so  

     z. ( x. x z) z =  y. ( x. x y) y 
7/19/2013 15 



Semantics of Substitution 

 x [e / x] = e 

 y [e / x] = y if y  x 

 

 (e1 e2) [e / x] = ((e1 [e / x] ) (e2 [e / x] )) 

 

 ( x. f) [e / x] = ( x. f)  

 ( y. f) [e / x] =  y. (f [e / x] )  

if y  x and y is not a free variable in e 

 -convert here if necessary! 

 
7/19/2013 16 



Substitution Example 

( y. y z) [( x. x y) / z] = ? 

7/19/2013 17 



Substitution Example 

( y. y z) [( x. x y) / z] = ? 

 Problems?  

 y free in the residue 

 

7/19/2013 18 



Substitution Example 

( y. y z) [( x. x y) / z] = ? 

 Problems?  

 y free in the residue 

  ( y. y z) [( x. x y) / z]  
𝛼
  ( w. w z) [( x. x y) / z]  

=  w. w ( x. x y)  

7/19/2013 19 



Substitution Example 

 Only replace free occurrences 

 ( y. y z ( z. z)) [( x. x) / z] = ? 

7/19/2013 20 



Substitution Example 

 Only replace free occurrences 

 ( y. y z ( z. z)) [( x. x) / z] = 

 y. y ( x. x) ( z. z) 

Not 

 y. y ( x. x) ( z. ( x. x)) 

7/19/2013 21 



  reduction 

   Rule:  ( x. P) N 
𝛽
  P [N /x] 

 

 Essence of computation in the lambda 
calculus 

7/19/2013 22 



Example 

 ( z. ( x. x y) z) ( y. y z) 

 
𝛽
  ( x. x y) ( y. y z) 

 
𝛽
  ( y. y z) y 

𝛽
  y z 

 

 ( x. x x) ( x. x x)  

 
𝛽
  ( x. x x) ( x. x x)  

 
𝛽
  ( x. x x) ( x. x x) 

𝛽
  … 

7/19/2013 23 



 -equivalence 

 -equivalence is the smallest congruence 
containing -equivalence and -reduction  

 A term is in normal form if no subterm is -
equivalent to a term that can be -reduced 

 Theorem (Church-Rosser): if e1 and e2 are 
-equivalent and both are normal forms, 
then they are -equivalent 

 So each term has a unique fully reduced form, 
up to -equivalence 

7/19/2013 24 



Order of Evaluation 

 Order of evaluation matters! 
 Not all terms reduce to normal forms 

 Not all reduction strategies will produce a normal 
form if one exists 

 Two main strategies: eager and lazy 

 Reflected in functional languages (OCaml is 
eager, Haskell is lazy) 

7/19/2013 25 



Lazy Evaluation 

 Reduce the left side of an application 
first 

 -reduce when left side is an 
abstraction (function) 

 Don’t evaluate the right side unless we 
have to! 

 When there are multiple applications, 
go top-down and left-to-right 

7/19/2013 26 



Lazy Example 

 ( z. ( x. x)) (( y. y y) ( y. y y)) 
𝛽
  ? 

 

7/19/2013 27 



Lazy Example 

 ( z. ( x. x)) (( y. y y) ( y. y y))  
𝛽
  ( x. x) 

Done! 

7/19/2013 28 



Eager Evaluation 

 Reduce the left side of an application first 

 Then reduce the right side 

 -reduce when left side is an abstraction 
(function) and right side cannot be reduced 
(eagerly) any further 

 Might not be a normal form! 

 When there are multiple applications, go 
top-down and left-to-right 

 Evaluate everything we can 

 
7/19/2013 29 



Eager Example 

 ( z. ( x. x)) (( y. y y) ( y. y y)) 
𝛽
  ? 

 

7/19/2013 30 



Eager Example 

 ( z. ( x. x)) (( y. y y) ( y. y y)) 

𝛽
  ( z. ( x. x)) (( y. y y) ( y. y y)) 

 

7/19/2013 31 



Eager Example 

 ( z. ( x. x)) (( y. y y) ( y. y y)) 

𝛽
  ( z. ( x. x)) (( y. y y) ( y. y y)) 

𝛽
  ( z. ( x. x)) (( y. y y) ( y. y y)) 

𝛽
  … 

 

7/19/2013 32 



Operational Semantics for -calculus  

E  E’’ 

E E’  E’’ E’ 
 

 Application (version 1 - Lazy Evaluation) 

( x . E ) E’  E [E’ / x] 

 

 Application (version 2 - Eager Evaluation) 

E’  E’’ 

( x . E ) E’  ( x . E ) E’’ 
 

( x . E ) V  E [V / x] 

   where V is a variable or abstraction 
7/19/2013 33 



  (Eta) Reduction 

   Rule:  x. e x 

  e if x not free in e 

 Can be useful in both directions 

 Not valid in OCaml  

 Recall lambda-lifting and side effects 

 Different from ( x. e) x   e  (-reduction) 

 

 Example:  x. ( y. y) x 

   y. y 

7/19/2013 34 



Expressiveness 

 Untyped -calculus is Turing Complete 
 Can express any sequential computation 

 Tricky parts:  
 How to express basic data: booleans, integers, 

etc? 

 How to express recursion? 

 Constants, if_then_else, etc, are conveniences; 
can be added as syntactic sugar 

7/19/2013 35 



Typed vs. Untyped -calculus 

 The pure -calculus has no notion of type:   
(f f) is a legal expression 

 Types restrict which applications are valid 

 Types are not syntactic sugar! They disallow 
some terms/executions 

 Simply typed -calculus is less powerful than 
the untyped -calculus: NOT Turing 
Complete (no recursion) 

7/19/2013 36 


