Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by
Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

7/19/2013

http://courses.engr.illinois.edu/cs421/

i Lambda Calculus

= Aims to capture the essence of functions,
function applications, and evaluation

= A-Calculus is a theory of computation

= Programs may be viewed as functions from
input (initial state and input values) to
output (resulting state and output values)

= A-calculus makes this precise, and provides
rules for working with functions in general

= Can be typed or untyped, but we'll focus on
untyped

7/19/2013 2

i Lambda Calculus: Motivation

= Typed and untyped A-calculus used for
theoretical study of (sequential)
programming languages

= Programming languages can be thought of
as A-calculus + predefined constructs,
constants, types, syntactic sugar
(denotational semantics)

= OCaml is close to the A-calculus:
fun X -> exp = A X. exp
letx =e;ine, = (A X. &) e

7/19/2013

i Untyped A-calculus

= Only three kinds of expressions:
«Variables: x, y, z, w, ...

= Abstraction: A X. e
(Function creation, as fun x -> e)

« Application: e, e,

7/19/2013 4

i Untyped A-calculus Grammar

= Formal BNF Grammar:

= <expression> ::= <variable>
<abstraction>
<application>
(<expression>)

= <abstraction>

::= A<variable>.<expression>
= <application>
.= <expression> <expression>

7/19/2013 5

i Example

= Which variables are which?

(AX. LY. Y (AX.XY) X)X

7/19/2013

i Example

= Which variables are which?

A A

7/19/2013

i Working with Variables

= Occurrence: a location of a subterm (variable
or complex term) in a term

= Variable binding: A X. e is a binding of x to e

= Bound occurrence: all occurrences of x in
A X €

s Free occurrence: one that is not bound

= Scope of binding: in A X. e, all occurrences in
e not in a subterm of the form A x. e’ (same
X) are in scope of that binding of x

= Free variables: all variables with free
occurrences In a term

7/19/2013 8

i Untyped A-calculus

= How do you compute with the A-calculus?
= Roughly speaking, by substitution:
(AXx.e)e, = e le/X]

= Modulo subtleties to avoid free variable
capture

7/19/2013

Semantics of Substitution

sX[e/X]=e
sy[e/X]=yify#X

= (e, &) [e/x]=((e[e/x])(e[e/x]))

s (AX.f)[e/x] = (A X f)
= (hy.[e/x]=2ry.(f[e/x])
if y #x and y is not a free variable in e

7/19/2013 10

i Changing Names

= o~conversion:

LX. e = Ay, (e [y/x])
= Provided that
1.yis notfreeine

2. No free occurrence of X in e
becomes bound when replaced by y

7/19/2013

11

i o~conversion Failure

1. Error: y is free in term

A X XY 5 AY.VY
2. Error: free occurrence of x becomes bound
in wrong way when replaced by y

kx.ky.xiky.ky.y

But A X. (ky.y)xiky. (LY. VY)Y
and A y. (L. y)yikx. (Ly.y) X are okay

7/19/2013 12

i Congruence

s Let ~ be a relation on lambda terms.
~ |S @ congruence if

= ~ |S an equivalence relation (reflexive,
symmetric, transitive)

s If e, ~ e, then
= (ee;) ~(ee)and (e e)~ (e e)
= AX. € VAX &

= Congruent terms are “functionally the
Same” in some way

13

i o-equivalence

= a-equivalence is the smallest
congruence containing a-conversion

= i.e., two terms are a-equivalent if
they can be a-converted into the
same term

= We usually treat a-equivalent terms
as equal

7/19/2013 14

i Proving a-equivalence

Show: A X. (A Y.y X)X =_AY. (AX.XY)Y
= A X (ky.yx)xikz. (LY.y Z)z, SO
AX.(AY.YyX)X=,AZ. (LY. YZ)Z
-(ky.yz)i(kx.xz), SO
(Ay.y2z) =, (A X. X2Z)and
MNZ.(AY.YZ)Z=_1Z (A X.X2Z)Z
= A Z (kx.xz)ziky. (L X.XY)Yy, SO
MNZ.(AX.XZ)z=_LY.(AX.XY)Y

7/19/2013 15

i Semantics of Substitution

sX[e/X]=e
sy[e/Xx]=yify =X

= (e, &) [e/x]=((e[e/x])(e[e/x]))

s (AX.)[e/x] =(AXf)
=(Ay.f)le/x]=ry. (f[e/X])

if y #x and y is not a free variable in e
a-convert here if necessary!

7/19/2013 16

‘-L Substitution Example

Ay.yz)[(Ax.xy)/[z] =7

7/19/2013

17

i Substitution Example

(Ay.yz)[(AX.Xy)/[z] ="
= Problems?
= y free in the residue

7/19/2013

18

i Substitution Example

(Ay.yz)[(AX.Xy)/[z] ="
= Problems?
= y free in the residue

= (Ay.y2Z) [(Ax. xY)/ Z]
E)(KW.WZ) [((A X. XY) /[Z]
=AW.W(AX. XY)

7/19/2013

19

i Substitution Example

= Only replace free occurrences
s(AY.YZ(AZ.2) [(AX.X)/z] =7

7/19/2013

20

i Substitution Example

= Only replace free occurrences
s(AY.YZ(AZ.2) [(AX. X))/ z] =
LY.V (AX X)(Az 2)
Not
LY.V (AX X)(Az (AX X))

7/19/2013

21

i B reduction

= BRule: (AX.P)N E> PN /X]

= Essence of computation in the lambda
calculus

7/19/2013

22

i Example

s (AMZ.(AX.XY)Z) (LY. VY 2)
(A X. xy)(?» .Y 2)
(Ly.y2)y5y2

B
—
B
—

m (A X X X) (A X XX)

g(kx.xx) (A X. X X)

E)(KX.XX) (kx.xx)g...

7/19/2013

23

i o-equivalence

= af-equivalence is the smallest congruence
containing o.-equivalence and B-reduction

s A term is in normal form if no subterm is o.-
equivalent to a term that can be B-reduced

= Theorem (Church-Rosser): if e; and e, are
o-equivalent and both are normal forms,
then they are a-equivalent

= S0 each term has a unique fully reduced form,
up to a-equivalence

7/19/2013 24

i Order of Evaluation

s Order of evaluation matters!
= Not all terms reduce to normal forms

= Not all reduction strategies will produce a normal
form if one exists

= TWO main strategies: eager and lazy

= Reflected in functional languages (OCaml is
eager, Haskell is lazy)

7/19/2013 25

i Lazy Evaluation

= Reduce the left side of an application
first

= 3-reduce when left side is an
abstraction (function)

= Don't evaluate the right side unless we
have to!

= When there are multiple applications,
go top-down and left-to-right

7/19/2013 26

i Lazy Example

(b2 X X)) (LY. YY) (Y. YY) D2

7/19/2013 27

i Lazy Example

(L. (AX X)) (LY. YY) (Ay.yY))

A (A X. X)
Done!

7/19/2013

28

i Eager Evaluation

= Reduce the left side of an application first
= Then reduce the right side

= 3-reduce when left side is an abstraction
(function) and right side cannot be reduced
(eagerly) any further

= Might not be a normal form!

= When there are multiple applications, go
top-down and left-to-right

= Evaluate everything we can

7/19/2013 29

i Fager Example

(b2 X X)) (LY. YY) (Y. YY) D2

7/19/2013 30

Eager Example

= =

AMZ.(AX X)) (LY. YY) (RY. YY)
Pz.(Ax. X)) ((Ly.yYY) (LY. YY)

7/19/2013

Eager Example

Az.(Ax. X)) (LY. YY) (LY. YY)
Pz.(Ax. X)) ((Ly.yYY) (LY. YY)
Pz.(Ax. X)) ((Ly.yYY) (LY. YY)

= = =

7/19/2013

i Operational Semantics for A-calculus

E—> E”
EE —> E"E

= Application (version 1 - Lazy Evaluation)
(AXx.E)E'—> E[E'/X]

= Application (version 2 - Eager Evaluation)
E'— E”
AXx.E)EE—-(AXx.E)E”

(Ax.E) V- E[V/X]
where V is a variable or abstraction

7/19/2013 33

i n (Eta) Reduction

= nRule: A X. eX D>eifx not free in e
= Can be useful in both directions
= Not valid in OCaml
= Recall lambda-lifting and side effects
= Different from (A x. €) x - e (B-reduction)

= Example: A X. (A Y. Y) X 1 LY.V

7/19/2013 34

i Expressiveness

= Untyped A-calculus is Turing Complete
= Can express any sequential computation
= Tricky parts:
= How to express basic data: booleans, integers,
etc?
= How to express recursion?

= Constants, if_then_else, etc, are conveniences;
can be added as syntactic sugar

7/19/2013 35

i Typed vs. Untyped A-calculus

= The pure \-calculus has no notion of type:
(f f) is a legal expression

= Types restrict which applications are valid

= Types are not syntactic sugar! They disallow
some terms/executions

= Simply typed A-calculus is less powerful than
the untyped A-calculus: NOT Turing
Complete (no recursion)

7/19/2013 36

