Programming Languages and Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Types of Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata - covered in automata theory

Sample Grammar

- Language: Parenthesized sums of 0's and 1's
- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

BNF Grammars

- Start with a set of characters, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$ - We call these termina/s
- And a set of different characters, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \ldots$
- We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

- BNF rules (aka productions) have form

$$
x::=y
$$

where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals

- BNF grammar is a set of BNF rules such that each nonterminal used appears on the left of some rule (i.e., at least one production per nonterminal)

Sample Grammar

- Terminals: 01 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
<Sum> ::= 0|1
| <Sum> + <Sum> | (<Sum>)

BNF Deriviations

- Given rules

$$
\mathbf{X}::=y \mathbf{Z} w \text { and } \mathbf{Z}::=\mathrm{v}
$$

we may write

$$
\mathbf{X}=>y \mathbf{Z} w=>y v w
$$

- Sequence of such replacements called derivation
- Derivation called right-most if always replace the right-most non-terminal

BNF Derivations

- Start with the start symbol:

<Sum> =>

BNF Derivations

- Pick a non-terminal
<Sum> =>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum >

$$
=>(\text { SSum }>)+\text { <Sum > }
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
$=>($ <Sum $>)+<$ Sum $>$
$=>($ <Sum $>+$ <Sum $>)+$ <Sum $>$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >
$=>($ <Sum $>)+$ <Sum $>$
$=>(<$ Sum $>+$ <Sum $>)+<$ Sum $>$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::=1
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+ \text { SUum }>)+\text { SUum }> \\
& =>(\text { Sum }>+1)+\text { SUum }>
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+ \text { SUum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 0
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { SUum }>)+\text { <Sum }> \\
& =>(\text { Suum }>+ \text { Sum }>)+\text { SUum }> \\
& =>(<\text { Sum }>+1)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { Suum }>+ \text { Sum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+\text { SUum }> \\
& =>(\text { SUum }>+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute
- <Sum> ::= 0
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { SUum }> \\
& =>(\text { Sum }>+ \text { SUum }>)+\text { Sum }> \\
& =>(\text { SUum }>+1)+<\text { Sum }> \\
& =>(\text { Sum }>+1) 0 \\
& =>(0+1)+0
\end{aligned}
$$

BNF Derivations

- $(0+1)+0$ is generated by grammar
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { SUum }>)+\text { SUum }> \\
& =>(\text { Sum }>+ \text { SUum }>)+\text { Sum }> \\
& =>(\text { Sum }>+1)+<\text { Sum }> \\
& =>(<\text { Sum }>+1)+0 \\
& =>(0+1)+0
\end{aligned}
$$

<Sum> ::= $0|1|$ <Sum> + <Sum> | (<Sum>)

<Sum> =>

BNF Semantics

- The language of a BNF grammar is the set of all strings of terminals that can be derived from the Start symbol

Extended BNF Grammars

- Alternatives: allow rules of from $\mathbf{X}::=y \mid z$ - Abbreviates $\mathbf{X}::=\mathrm{y}, \mathbf{X}::=\mathrm{z}$
- Options: X ::= y[v]z
- Abbreviates $\mathbf{X}::=y v z, \mathbf{X}::=y z$
- Repetition: X ::= y\{v\}*z
- Can be eliminated by adding new nonterminal \mathbf{V} and rules $\mathbf{X}::=\mathrm{yz}$, $\mathbf{X}::=y V z, \mathbf{V}::=v, \mathbf{V}::=v V$

Regular Grammars

- Subclass of BNF
- Only rules of form <nonterminal>::=<terminal><nonterminal> or <nonterminal>::=<terminal> or <nonterminal>::= $=$
- Defines same class of languages as regular expressions
- Can be used for writing lexers

Example

- Regular grammar: <Balanced> ::= <Balanced> ::= 0<OneAndMore> <Balanced> ::= 1<ZeroAndMore> <OneAndMore> ::= 1<Balanced> <ZeroAndMore> ::=0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0's as 1's

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of the production used on it

Example

- Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1
- Problem: Build parse tree for $1 * 1+0$ as an <exp>

Example cont.

$$
=1 * 1+0: \quad<\exp >
$$

<exp> is the start symbol for this parse tree

Example cont.

- $1^{*} 1+0: \quad$ <exp> <factor>

Use rule: <exp> ::= <factor>

Example cont.

Use rule: <factor> ::= <bin> * <exp>

Example cont.

Use rules: <bin> ::=1 and <exp> ::= <factor> + <factor>

Example cont.

- $1^{*} 1+0$ < exp>

Use rule: <factor> ::= <bin>

Example cont.

- $1^{*} 1+0:<\exp >$ <factor>

Use rules: <bin> ::= 1|0

Example cont.

- $1^{*} 1+0$ < exp>

Fringe of tree is string generated by grammar

Your Turn: $1 * 0+0 * 1$

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes (e.g. exp)
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example

- Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0|1
- type exp = Factor2Exp of factor | Plus of factor * factor
and factor $=$ Bin2Factor of bin | Mult of bin * exp
and bin = Zero | One

Example cont.

$$
\begin{aligned}
& \text { - } 1^{*} 1+0:<\underset{\mid}{\text { <exp> }} \\
& \text { <factor> } \\
& \text { <bin> } \\
& 1
\end{aligned}
$$

Example cont.

- 1 * $1+0: \quad$ <exp>

Factor2Exp(Mult(One, Plus(Bin2Factor One, Bin2Factor Zero)))

Ambiguous Grammars and Languages

- A BNF grammar is ambiguous if its language contains strings for which there is more than one parse tree
- If all BNFs for a language are ambiguous then the language is inherently ambiguous

Example: Ambiguous Grammar

$-0+1+0$

Example

- What is the result for:
 $$
3+4 * 5+6
$$

Example

- What is the result for:

$$
3+4 * 5+6
$$

- Possible answers:

$$
\begin{aligned}
& 41=((3+4) * 5)+6 \\
& 47=3+(4 *(5+6)) \\
& 29=(3+(4 * 5))+6=3+((4 * 5)+6) \\
& 77=(3+4) *(5+6)
\end{aligned}
$$

Example

What is the value of:

$$
7-5-2
$$

Example

What is the value of:

$$
7-5-2
$$

Possible answers:

- In Pascal, C++, SML assoc. left $7-5-2=(7-5)-2=0$
- In APL, associate to right

$$
7-5-2=7-(5-2)=4
$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity
- There may be other sources as well

How to Enforce Associativity

- Have at most one recursive call per production
- When two or more recursive calls would be natural leave right-most one for right associativity, left-most one for left associativity

Example

- <Sum> ::= 0 | 1 | <Sum> + <Sum>
| (<Sum>)
- Becomes
- <Sum> ::= <Num> | <Num> + <Sum>
- <Num> ::= 0|1| (<Sum>)

Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly)
- Precedence for infix binary operators as in following table
- Needs to be reflected in grammar

Precedence Table - Sample

$\left.$| | Fortan | Pascal | $\mathrm{C} / \mathrm{C}++$ | Ada | SML |
| :---: | :---: | :---: | :---: | :---: | :---: |
| highest | $* *$ | $*, /$,
 div,
 mod | ,++-- | $* *$ | div,
 mod,
 $/, *$ |
| | $*, /$ | ,+- | $*, /$, | $*, /$, | |
| $\%$ | | | | | |
| mod | | | | | | | ,,+- |
| :---: |
| \wedge | \right\rvert\,

First Example Again

- In any above language, 3 + 4 * 5 + 6 $=29$
- In APL, all infix operators have same precedence
- Thus we still don't know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Predence in Grammar

- Higher precedence translates to deeper in the derivation chain
- Example:

$$
\begin{gathered}
\text { <exp> : := <id> | <exp> + <exp> } \\
\text { | <exp> * <exp> }
\end{gathered}
$$

- Becomes
<exp> ::= <mult_exp> | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

