
6/21/2013 1

Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/

6/21/2013 2

Grammars

 Grammars are formal descriptions of which
strings over a given character set are in a
particular language

 Language designers write grammar

 Language implementers use grammar to
know what programs to accept

 Language users use grammar to know how
to write legitimate programs

6/21/2013 3

Types of Formal Language Descriptions

 Regular expressions, regular grammars,
finite state automata

 Context-free grammars, BNF grammars,
syntax diagrams

 Whole family more of grammars and
automata – covered in automata theory

6/21/2013 4

Sample Grammar

 Language: Parenthesized sums of 0’s and 1’s

 <Sum> ::= 0

 <Sum >::= 1

 <Sum> ::= <Sum> + <Sum>

 <Sum> ::= (<Sum>)

6/21/2013 5

BNF Grammars

 Start with a set of characters, a,b,c,…
 We call these terminals

 And a set of different characters,
X,Y,Z,…
 We call these nonterminals

 One special nonterminal S called start
symbol

6/21/2013 6

BNF Grammars

 BNF rules (aka productions) have form

 X ::= y

 where X is any nonterminal and y is a string
of terminals and nonterminals

 BNF grammar is a set of BNF rules such that
each nonterminal used appears on the left of
some rule (i.e., at least one production per
nonterminal)

6/21/2013 7

Sample Grammar

 Terminals: 0 1 + ()
 Nonterminals: <Sum>
 Start symbol = <Sum>

 <Sum> ::= 0
 <Sum >::= 1
 <Sum> ::= <Sum> + <Sum>
 <Sum> ::= (<Sum>)
 Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)

6/21/2013 8

BNF Deriviations

 Given rules

X ::= yZw and Z ::=v

we may write

X => yZw => yvw

 Sequence of such replacements called
derivation

 Derivation called right-most if always
replace the right-most non-terminal

6/21/2013 9

BNF Derivations

 Start with the start symbol:

<Sum> =>

6/21/2013 10

BNF Derivations

 Pick a non-terminal

<Sum> =>

6/21/2013 11

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

6/21/2013 12

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

6/21/2013 13

 Pick a rule and substitute:

 <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

BNF Derivations

6/21/2013 14

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

BNF Derivations

6/21/2013 15

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

6/21/2013 16

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

6/21/2013 17

 Pick a rule and substitute:

 <Sum >::= 1

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

BNF Derivations

6/21/2013 18

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

BNF Derivations

6/21/2013 19

 Pick a rule and substitute:

 <Sum >::= 0

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) + 0

BNF Derivations

6/21/2013 20

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) + 0

BNF Derivations

6/21/2013 21

 Pick a rule and substitute

 <Sum> ::= 0

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) 0

 => (0 + 1) + 0

BNF Derivations

6/21/2013 22

 (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) + 0

 => (0 + 1) + 0

BNF Derivations

6/21/2013 23

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

6/21/2013 24

BNF Semantics

 The language of a BNF grammar is the
set of all strings of terminals that can
be derived from the Start symbol

6/22/2013 25

Extended BNF Grammars

 Alternatives: allow rules of from X ::= y | z

 Abbreviates X ::= y, X ::= z

 Options: X ::= y[v]z

 Abbreviates X ::= yvz, X ::= yz

 Repetition: X ::= y{v}*z

 Can be eliminated by adding new
nonterminal V and rules X ::= yz,
X ::= yVz, V ::= v, V ::= vV

6/21/2013 26

Regular Grammars

 Subclass of BNF

 Only rules of form
<nonterminal>::=<terminal><nonterminal>
or <nonterminal>::=<terminal>
or <nonterminal>::= ε

 Defines same class of languages as regular
expressions

 Can be used for writing lexers

6/21/2013 27

Example

 Regular grammar:

<Balanced> ::=

<Balanced> ::= 0<OneAndMore>

<Balanced> ::= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>

<ZeroAndMore> ::= 0<Balanced>

 Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

6/21/2013 28

 Graphical representation of derivation

 Each node labeled with either non-terminal
or terminal

 If node is labeled with a terminal, then it is a
leaf (no sub-trees)

 If node is labeled with a non-terminal, then
it has one branch for each character in the
right-hand side of the production used on it

Parse Trees

6/21/2013 29

Example

 Consider grammar:

 <exp> ::= <factor>

 | <factor> + <factor>

 <factor> ::= <bin>

 | <bin> * <exp>

 <bin> ::= 0 | 1

 Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

6/21/2013 30

Example cont.

 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
tree

6/21/2013 31

Example cont.

 1 * 1 + 0: <exp>

 <factor>

Use rule: <exp> ::= <factor>

6/21/2013 32

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

6/21/2013 33

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

Use rules: <bin> ::= 1 and

 <exp> ::= <factor> +
<factor>

6/21/2013 34

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

Use rule: <factor> ::= <bin>

6/21/2013 35

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

Use rules: <bin> ::= 1 | 0

6/21/2013 36

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

Fringe of tree is string generated by grammar

6/21/2013 37

Your Turn: 1 * 0 + 0 * 1

6/21/2013 38

Parse Tree Data Structures

 Parse trees may be represented by OCaml
datatypes (e.g. exp)

 One datatype for each nonterminal

 One constructor for each rule

 Defined as mutually recursive collection of
datatype declarations

6/21/2013 39

Example

 Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

 type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One

6/21/2013 40

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

6/21/2013 41

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

Factor2Exp(Mult(One,

 Plus(Bin2Factor One, Bin2Factor Zero)))

6/21/2013 42

Ambiguous Grammars and Languages

 A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

 If all BNFs for a language are ambiguous
then the language is inherently ambiguous

6/21/2013 43

Example: Ambiguous Grammar

 0 + 1 + 0

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

6/21/2013 44

Example

 What is the result for:

3 + 4 * 5 + 6

6/21/2013 45

Example

 What is the result for:

3 + 4 * 5 + 6

 Possible answers:
 41 = ((3 + 4) * 5) + 6

 47 = 3 + (4 * (5 + 6))

 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)

 77 = (3 + 4) * (5 + 6)

6/21/2013 46

Example

 What is the value of:

7 – 5 – 2

6/21/2013 47

Example

 What is the value of:

7 – 5 – 2

 Possible answers:

 In Pascal, C++, SML assoc. left

 7 – 5 – 2 = (7 – 5) – 2 = 0

 In APL, associate to right

 7 – 5 – 2 = 7 – (5 – 2) = 4

6/21/2013 48

Two Major Sources of Ambiguity

 Lack of determination of operator
precedence

 Lack of determination of operator
associativity

 There may be other sources as well

6/21/2013 49

How to Enforce Associativity

 Have at most one recursive call per
production

 When two or more recursive calls would
be natural leave right-most one for
right associativity, left-most one for left
associativity

6/21/2013 50

Example

 <Sum> ::= 0 | 1 | <Sum> + <Sum>

 | (<Sum>)

 Becomes

 <Sum> ::= <Num> | <Num> + <Sum>

 <Num> ::= 0 | 1 | (<Sum>)

6/21/2013 51

Operator Precedence

 Operators of highest precedence
evaluated first (bind more tightly)

 Precedence for infix binary operators as
in following table

 Needs to be reflected in grammar

6/21/2013 52

Precedence Table - Sample

Fortan Pascal C/C++

Ada SML

highest ** *, /,
div,
mod

++, -- ** div,
mod,
/, *

*, / +, - *, /,
%

*, /,
mod

+, -,
^

+, - +, - +, - ::

6/21/2013 53

First Example Again

 In any above language, 3 + 4 * 5 + 6
= 29

 In APL, all infix operators have same
precedence
 Thus we still don’t know what the value is

(handled by associativity)

 How do we handle precedence in
grammar?

6/21/2013 54

Predence in Grammar

 Higher precedence translates to deeper in the
derivation chain

 Example:
<exp> ::= <id> | <exp> + <exp>
 | <exp> * <exp>

 Becomes

<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

