
6/21/2013 1

Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/

6/21/2013 2

Grammars

 Grammars are formal descriptions of which
strings over a given character set are in a
particular language

 Language designers write grammar

 Language implementers use grammar to
know what programs to accept

 Language users use grammar to know how
to write legitimate programs

6/21/2013 3

Types of Formal Language Descriptions

 Regular expressions, regular grammars,
finite state automata

 Context-free grammars, BNF grammars,
syntax diagrams

 Whole family more of grammars and
automata – covered in automata theory

6/21/2013 4

Sample Grammar

 Language: Parenthesized sums of 0’s and 1’s

 <Sum> ::= 0

 <Sum >::= 1

 <Sum> ::= <Sum> + <Sum>

 <Sum> ::= (<Sum>)

6/21/2013 5

BNF Grammars

 Start with a set of characters, a,b,c,…
 We call these terminals

 And a set of different characters,
X,Y,Z,…
 We call these nonterminals

 One special nonterminal S called start
symbol

6/21/2013 6

BNF Grammars

 BNF rules (aka productions) have form

 X ::= y

 where X is any nonterminal and y is a string
of terminals and nonterminals

 BNF grammar is a set of BNF rules such that
each nonterminal used appears on the left of
some rule (i.e., at least one production per
nonterminal)

6/21/2013 7

Sample Grammar

 Terminals: 0 1 + ()
 Nonterminals: <Sum>
 Start symbol = <Sum>

 <Sum> ::= 0
 <Sum >::= 1
 <Sum> ::= <Sum> + <Sum>
 <Sum> ::= (<Sum>)
 Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)

6/21/2013 8

BNF Deriviations

 Given rules

X ::= yZw and Z ::=v

we may write

X => yZw => yvw

 Sequence of such replacements called
derivation

 Derivation called right-most if always
replace the right-most non-terminal

6/21/2013 9

BNF Derivations

 Start with the start symbol:

<Sum> =>

6/21/2013 10

BNF Derivations

 Pick a non-terminal

<Sum> =>

6/21/2013 11

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

6/21/2013 12

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

6/21/2013 13

 Pick a rule and substitute:

 <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

BNF Derivations

6/21/2013 14

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

BNF Derivations

6/21/2013 15

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

6/21/2013 16

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

6/21/2013 17

 Pick a rule and substitute:

 <Sum >::= 1

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

BNF Derivations

6/21/2013 18

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

BNF Derivations

6/21/2013 19

 Pick a rule and substitute:

 <Sum >::= 0

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) + 0

BNF Derivations

6/21/2013 20

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) + 0

BNF Derivations

6/21/2013 21

 Pick a rule and substitute

 <Sum> ::= 0

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) 0

 => (0 + 1) + 0

BNF Derivations

6/21/2013 22

 (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>

 => (<Sum> + 1) + <Sum>

 => (<Sum> + 1) + 0

 => (0 + 1) + 0

BNF Derivations

6/21/2013 23

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

6/21/2013 24

BNF Semantics

 The language of a BNF grammar is the
set of all strings of terminals that can
be derived from the Start symbol

6/22/2013 25

Extended BNF Grammars

 Alternatives: allow rules of from X ::= y | z

 Abbreviates X ::= y, X ::= z

 Options: X ::= y[v]z

 Abbreviates X ::= yvz, X ::= yz

 Repetition: X ::= y{v}*z

 Can be eliminated by adding new
nonterminal V and rules X ::= yz,
X ::= yVz, V ::= v, V ::= vV

6/21/2013 26

Regular Grammars

 Subclass of BNF

 Only rules of form
<nonterminal>::=<terminal><nonterminal>
or <nonterminal>::=<terminal>
or <nonterminal>::= ε

 Defines same class of languages as regular
expressions

 Can be used for writing lexers

6/21/2013 27

Example

 Regular grammar:

<Balanced> ::= 

<Balanced> ::= 0<OneAndMore>

<Balanced> ::= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>

<ZeroAndMore> ::= 0<Balanced>

 Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

6/21/2013 28

 Graphical representation of derivation

 Each node labeled with either non-terminal
or terminal

 If node is labeled with a terminal, then it is a
leaf (no sub-trees)

 If node is labeled with a non-terminal, then
it has one branch for each character in the
right-hand side of the production used on it

Parse Trees

6/21/2013 29

Example

 Consider grammar:

 <exp> ::= <factor>

 | <factor> + <factor>

 <factor> ::= <bin>

 | <bin> * <exp>

 <bin> ::= 0 | 1

 Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

6/21/2013 30

Example cont.

 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
tree

6/21/2013 31

Example cont.

 1 * 1 + 0: <exp>

 <factor>

Use rule: <exp> ::= <factor>

6/21/2013 32

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

6/21/2013 33

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

Use rules: <bin> ::= 1 and

 <exp> ::= <factor> +
<factor>

6/21/2013 34

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

Use rule: <factor> ::= <bin>

6/21/2013 35

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

Use rules: <bin> ::= 1 | 0

6/21/2013 36

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

Fringe of tree is string generated by grammar

6/21/2013 37

Your Turn: 1 * 0 + 0 * 1

6/21/2013 38

Parse Tree Data Structures

 Parse trees may be represented by OCaml
datatypes (e.g. exp)

 One datatype for each nonterminal

 One constructor for each rule

 Defined as mutually recursive collection of
datatype declarations

6/21/2013 39

Example

 Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

 type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One

6/21/2013 40

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

6/21/2013 41

Example cont.

 1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

Factor2Exp(Mult(One,

 Plus(Bin2Factor One, Bin2Factor Zero)))

6/21/2013 42

Ambiguous Grammars and Languages

 A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

 If all BNFs for a language are ambiguous
then the language is inherently ambiguous

6/21/2013 43

Example: Ambiguous Grammar

 0 + 1 + 0

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

6/21/2013 44

Example

 What is the result for:

3 + 4 * 5 + 6

6/21/2013 45

Example

 What is the result for:

3 + 4 * 5 + 6

 Possible answers:
 41 = ((3 + 4) * 5) + 6

 47 = 3 + (4 * (5 + 6))

 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)

 77 = (3 + 4) * (5 + 6)

6/21/2013 46

Example

 What is the value of:

7 – 5 – 2

6/21/2013 47

Example

 What is the value of:

7 – 5 – 2

 Possible answers:

 In Pascal, C++, SML assoc. left

 7 – 5 – 2 = (7 – 5) – 2 = 0

 In APL, associate to right

 7 – 5 – 2 = 7 – (5 – 2) = 4

6/21/2013 48

Two Major Sources of Ambiguity

 Lack of determination of operator
precedence

 Lack of determination of operator
associativity

 There may be other sources as well

6/21/2013 49

How to Enforce Associativity

 Have at most one recursive call per
production

 When two or more recursive calls would
be natural leave right-most one for
right associativity, left-most one for left
associativity

6/21/2013 50

Example

 <Sum> ::= 0 | 1 | <Sum> + <Sum>

 | (<Sum>)

 Becomes

 <Sum> ::= <Num> | <Num> + <Sum>

 <Num> ::= 0 | 1 | (<Sum>)

6/21/2013 51

Operator Precedence

 Operators of highest precedence
evaluated first (bind more tightly)

 Precedence for infix binary operators as
in following table

 Needs to be reflected in grammar

6/21/2013 52

Precedence Table - Sample

Fortan Pascal C/C++

Ada SML

highest ** *, /,
div,
mod

++, -- ** div,
mod,
/, *

*, / +, - *, /,
%

*, /,
mod

+, -,
^

+, - +, - +, - ::

6/21/2013 53

First Example Again

 In any above language, 3 + 4 * 5 + 6
= 29

 In APL, all infix operators have same
precedence
 Thus we still don’t know what the value is

(handled by associativity)

 How do we handle precedence in
grammar?

6/21/2013 54

Predence in Grammar

 Higher precedence translates to deeper in the
derivation chain

 Example:
<exp> ::= <id> | <exp> + <exp>
 | <exp> * <exp>

 Becomes

<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

