
6/18/2013 1

Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/

6/18/2013 2

Compilers: Big Picture

 We want to turn strings (code) into
computer-readable instructions

 Done in phases

 Turn strings into abstract syntax trees (lex
and parse)

 Translate abstract syntax trees into
executable instructions (interpret or compile)

Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax
Semantic

Analysis
Symbol Table

Translate

Intermediate

Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction

Selection

Optimized Machine-Specific

Assembly Language

Optimize

Unoptimized Machine-

Specific Assembly Language

Emit code

Assembler

Relocatable

 Object Code

Assembly Language

Linker

Machine

Code

Optimize

Optimized IR

6/18/2013 4

Talking About Languages

 Language Syntax and Semantics

 Syntax

 - DFAs and NFAs

 - Grammars

 Semantics

 - Natural Semantics

 - Transition Semantics

6/18/2013 5

Language Syntax

 Syntax describes which strings of symbols
are meaningful expressions in a language

 It takes more than syntax to understand a
language; need meaning (semantics) too

 Syntax is the starting point

6/18/2013 6

Syntax of English Language

 Pattern 1

 Pattern 2

6/18/2013 7

Elements of Syntax

 Character set – previously always ASCII,
now often 64bit character sets

 Keywords – usually reserved

 Special constants – cannot assign values

 Identifiers – can assign values

 Operator symbols

 Delimiters (parentheses, braces, brackets)

 Blanks (aka white space)

6/18/2013 8

Elements of Syntax

 Expressions
 if ... then begin ... ; ... end else begin ... ; ... end

 Type expressions
 typexpr1 -> typexpr2

 Declarations (in functional languages)
 let pattern1 = expr1 in expr

 Statements (in imperative languages)
 a = b + c

 Subprograms
 let pattern1 = let rec inner = … in expr

6/18/2013 9

Elements of Syntax

 Modules

 Interfaces

 Classes (for object-oriented languages)

6/18/2013 10

Formal Language Descriptions

 Regular expressions, regular grammars,
finite state automata

 Context-free grammars, BNF grammars,
syntax diagrams

 Whole family more of grammars and
automata – covered in automata theory

6/18/2013 11

Grammars

 Grammars are formal descriptions of which
strings over a given character set are in a
particular language

 Language designers write grammar

 Language implementers use grammar to
know what programs to accept

 Language users use grammar to know how
to write legitimate programs

6/18/2013 12

Regular Expressions

 Simple kind of formal grammar

 Start with a given character set
(―alphabet‖) – a, b, c…

 Each character is a regular expression

 Meaning: set of the one one-letter string
of that character

6/19/2013 13

Regular Expressions

 If x and y are regular expressions, then xy is
a regular expression
 Meaning: set of all strings made from first a

string described by x then a string described by y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.

 If x and y are regular expressions, then x  y
is a regular expression
 Meaning: set of strings described by either x or y

 If x={a,ab} and y={c,d} then x  y={a,ab,c,d}

6/18/2013 14

Regular Expressions

 If x is a regular expression, then so is (x)
 Meaning is the same as x (helps disambiguate)

 If x is a regular expression, then so is x*
 Meaning: set of strings made from concatenating

zero or more strings from x

If x = {a,ab}

then x* = {"",a,ab,aa,aab,abab,aaa,aaab,…}

 
 Meaning: {""}, set containing the empty string

6/18/2013 15

Example Regular Expressions

 (01)*1
 The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}

 a*b(a*)
 The set of all strings of a’s and b’s with exactly

one b

 ((01) (10))*
 ?

 Regular expressions (equivalently, regular
grammars) used for lexing, breaking strings
into recognized words

6/18/2013 16

Example: Lexing

 Regular expressions good for describing
lexemes (words) in a programming language

 Identifier = (a  b  …  z  A  B  …  Z) (a
 b  …  z  A  B  …  Z  0  1  …  9)*

 Digit = (0  1  …  9)

 Number = 0  (1  …  9)(0  …  9)* 
~ (1  …  9)(0  …  9)*

 Keywords: if = if, while = while,…

6/18/2013 17

Implementing Regular Expressions

 Good for answering ―what are all the
strings in the language?‖

 Not so good for answering ―is this
particular string in the language?‖

 Problems with Regular Expressions
 which option to choose

 how many repetitions to make

 Solution: finite state automata

6/18/2013 18

Finite State Automata

 A finite state automata over an alphabet is:

 a directed graph

 a finite set of states defined by the nodes

 edges are labeled with elements of the alphabet,
or empty string; they define state transitions

 some nodes marked as final

 one node marked as start state

6/18/2013 19

Example FSA

0 1 1

0

Start State
Final State

Final State

1

0

1 0

6/19/2013 20

Deterministic FSAs

 A deterministic automata (DFA) has for
every state exactly one edge for each letter

 No edge labeled with 

 In general automata may be non-
deterministic (NFA)

 NFA also allows edges labeled by 

 DFAs are a specific kind of NFA

6/18/2013 21

DFA Language Recognition

 Think of recognition as a board game: DFA
is board

 You have the string as a deck of cards, one
letter on each card

 Start by placing marker on the start state

6/18/2013 22

DFA Language Recognition

 Move marker from one state to next along
edge indicated by top card in deck; discard
top card

 When you run out of cards,

 if you are in a final state, you win; string is
in language

 if you are not in a final state, you lose;
string is not in language

6/18/2013 23

DFA Language Recognition Summary

 Given a string over alphabet
 Start at start state
 Move over edge labeled with first letter to

new state
 Remove first letter from string
 Repeat until string is gone
 If end in final state then string in language

6/18/2013 24

Example DFA

 Regular expression: (0  1)* 1

 Deterministic FSA

0 1

1

0

6/18/2013 25

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1

0 1

1

0

6/18/2013 26

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 27

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 28

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 29

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 30

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 31

Example DFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1

0 1

1

0

6/18/2013 32

 NFA generalizes DFA in two ways:

 Include edges labeled by 

 Allows process to non-deterministically
change state

Non-deterministic FSA

0 1



0

6/18/2013 33

 Each state can have zero, one, or more edges
labeled by each letter

 Given a letter, non-deterministically choose
an edge to use

 …

Non-deterministic FSAs

0

0

6/18/2013 34

NFA Language Recognition

 Play the same game as with DFA
 Free move: move across an edge with

empty string label without discarding card
 When you run out of letters, if you are in

final state, you win; string is in language
 You can take one or more moves back and

try again
 If you’ve tried all possible paths without

success, then you lose; string not in
language

6/18/2013 35

Example NFA

 Regular expression: (0  1)* 1

 Non-deterministic automata

0

1

1

6/18/2013 36

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 37

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 38

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 39

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess

0

1

1

6/19/2013 40

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Backtrack

0

1

1

6/18/2013 41

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess again

0

1

1

6/18/2013 42

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess

0

1

1

6/18/2013 43

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Backtrack

Example NFA

0

1

1

6/18/2013 44

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess again

0

1

1

6/18/2013 45

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 46

Example NFA

 Regular expression: (0  1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess (works this time)

0

1

1

6/18/2013 47

Compilers: Big Picture

 We want to turn strings (code) into
computer-readable instructions

 Done in phases

 Turn strings into abstract syntax trees (lex
and parse)

 Translate abstract syntax trees into
executable instructions (interpret or compile)

6/18/2013 48

Lexing and Parsing

 Converting strings to abstract syntax trees
done in two phases

 Lexing: Convert a string (program text)
into a list of tokens (―words‖ of the
language)

 Parsing: Convert a list of tokens into an
abstract syntax tree

6/18/2013 49

Lexing

 Different syntactic categories of ―words‖:
tokens

 Example: given token categories String, Int,
and Float, "asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float 3.14]

6/18/2013 50

Lexing

 Each category described by regular
expression (with extended syntax)

 Words recognized by (encoding of)
corresponding finite state automaton

 Problem: we want to pull all words out
of a string, not just recognize one word

6/18/2013 51

Lexing

 Modify behavior of DFA

 When we encounter a character in a state
for which there is no transition

 Stop processing the string

 If in an accepting state, return the token
that corresponds to the state, and the
remainder of the string

 If not, fail

 Add recursive layer to get sequence

6/18/2013 52

Example

 s1: return a string

 s2: return an integer

 s3: return a float

.
s3 s2

s0

a-z

0-9

s1

a-z

0-9 0-9

6/18/2013 53

Lex, ocamllex

 Could write the regexp, then translate to
DFA by hand

 Better: Write program to take regexp as
input and automatically generate automata

 The most popular tool for this is Lex

 ocamllex is the OCaml version

6/18/2013 54

How to do it

 To use regular expressions to parse
our input we need:

 Some way to access the input string
— call it a lexing buffer

 Set of regular expressions

 For each regexp, an action to take
when matched

6/18/2013 55

How to do it

 Lexer takes regular expressions and
generates a state machine

 State machine takes lexing buffer and
applies transitions

 When accepting state is reached,
perform appropriate action

6/18/2013 56

Mechanics

 Put table of regexp and corresponding
actions (written in OCaml) into a file
<filename>.mll

 Run ocamllex <filename>.mll

 Produces OCaml code for a lexical
analyzer in<filename>.ml

6/18/2013 57

Sample Input

rule main = parse

 ['0'-'9']+ { print_string "Int\n"}

 | ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}

 | ['a'-'z']+ { print_string "String\n"}

 | _ { main lexbuf }

 {

 let newlexbuf = (Lexing.from_channel stdin) in

 print_string "Ready to lex.\n";

 main newlexbuf

}

6/18/2013 58

General Input

{ header }

let ident = regexp ...

rule entrypoint [arg1... argn] = parse

 regexp { action }

 | ...

 | regexp { action }

and entrypoint [arg1... argn] = parse ...

and ...

{ trailer }

6/18/2013 59

Ocamllex Input

 header and trailer contain arbitrary
OCaml code put at top and bottom of
<filename>.ml

 let ident = regexp ... defines
abbreviations for regexps to use in rules

6/18/2013 60

Ocamllex Input

 <filename>.ml contains one lexing
function per entrypoint
 Name of function is name given for

entrypoint

 Each entry point becomes an Ocaml
function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

 arg1... argn are for use in action

6/18/2013 61

Ocamllex Regular Expressions

 Single quoted characters for letters:
'a'

 _ (underscore): matches any letter

 Eof: special “end_of_file” marker

 Concatenation same as usual

 "string": concatenation of sequence
of characters

 e1 | e2 : choice (as e1  e2)

6/18/2013 62

Ocamllex Regular Expression

 [c1 - c2]: choice of any character
between first and second inclusive, as
determined by character codes

 [^c1 - c2]: choice of any character NOT
in set

 e*: same as before (repetition)

 e+: same as e e*

 e?: option (as e1  )

6/18/2013 63

Ocamllex Regular Expression

 e1 # e2: set of characters in e1 but not
in e2; e1 and e2 must describe sets of
characters

 ident: abbreviated regexp, previously
defined by let ident = regexp

 e1 as id: binds the result of e1 to id to
be used in the associated action

6/18/2013 64

Ocamllex Manual

 More details can be found at

http://caml.inria.fr/pub/docs/manual-
ocaml/manual026.html

http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html

6/18/2013 65

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']

let digits = digit +

let lower_case = ['a'-'z']

let upper_case = ['A'-'Z']

let letter = upper_case | lower_case

let letters = letter +

6/18/2013 66

Example : test.mll

rule main = parse

 (digits)'.'digits as f { Float (float_of_string f) }

 | digits as n { Int (int_of_string n) }

 | letters as s { String s}

 | _ { main lexbuf }

 { let newlexbuf = (Lexing.from_channel stdin) in

 print_string "Ready to lex.";

 print_newline ();

 main newlexbuf }

6/18/2013 67

Example

#use "test.ml";;

…

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
result = <fun>

Ready to lex.

hi there 234 5.2

- : result = String "hi"

What happened to the rest?

6/18/2013 68

Example

let b = Lexing.from_channel stdin;;

main b;;

hi 673 there

- : result = String "hi"

main b;;

- : result = Int 673

main b;;

- : result = String "there"

6/18/2013 69

Problem

 How to get lexer to look at more than the
first token at one time?

 Answer: action has to tell it to – with a
recursive call

 Side benefit: can add ―state‖ into lexing

 Note: already used this with the _ case

6/18/2013 70

Example

rule main = parse

 (digits) '.' digits as f { Float
(float_of_string f) :: main lexbuf}

 | digits as n { Int (int_of_string n) ::
main lexbuf }

 | letters as s { String s :: main
lexbuf}

 | eof { [] }

 | _ { main lexbuf }

6/18/2013 71

Example Results

Ready to lex.

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int
234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

6/18/2013 72

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
 (digits) '.' digits as f { Float (float_of_string

f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}

6/18/2013 73

Dealing with comments

 | open_comment { comment lexbuf }

 | eof { [] }

 | _ { main lexbuf }

and comment = parse

 close_comment { main lexbuf }

 | _ { comment lexbuf }

6/18/2013 74

Dealing with nested comments

rule main = parse …
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }

 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }

 | _ { comment depth lexbuf }

