
6/18/2013 1

Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/

6/18/2013 2

Compilers: Big Picture

 We want to turn strings (code) into
computer-readable instructions

 Done in phases

 Turn strings into abstract syntax trees (lex
and parse)

 Translate abstract syntax trees into
executable instructions (interpret or compile)

Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax
Semantic

Analysis
Symbol Table

Translate

Intermediate

Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction

Selection

Optimized Machine-Specific

Assembly Language

Optimize

Unoptimized Machine-

Specific Assembly Language

Emit code

Assembler

Relocatable

 Object Code

Assembly Language

Linker

Machine

Code

Optimize

Optimized IR

6/18/2013 4

Talking About Languages

 Language Syntax and Semantics

 Syntax

 - DFAs and NFAs

 - Grammars

 Semantics

 - Natural Semantics

 - Transition Semantics

6/18/2013 5

Language Syntax

 Syntax describes which strings of symbols
are meaningful expressions in a language

 It takes more than syntax to understand a
language; need meaning (semantics) too

 Syntax is the starting point

6/18/2013 6

Syntax of English Language

 Pattern 1

 Pattern 2

6/18/2013 7

Elements of Syntax

 Character set – previously always ASCII,
now often 64bit character sets

 Keywords – usually reserved

 Special constants – cannot assign values

 Identifiers – can assign values

 Operator symbols

 Delimiters (parentheses, braces, brackets)

 Blanks (aka white space)

6/18/2013 8

Elements of Syntax

 Expressions
 if ... then begin ... ; ... end else begin ... ; ... end

 Type expressions
 typexpr1 -> typexpr2

 Declarations (in functional languages)
 let pattern1 = expr1 in expr

 Statements (in imperative languages)
 a = b + c

 Subprograms
 let pattern1 = let rec inner = … in expr

6/18/2013 9

Elements of Syntax

 Modules

 Interfaces

 Classes (for object-oriented languages)

6/18/2013 10

Formal Language Descriptions

 Regular expressions, regular grammars,
finite state automata

 Context-free grammars, BNF grammars,
syntax diagrams

 Whole family more of grammars and
automata – covered in automata theory

6/18/2013 11

Grammars

 Grammars are formal descriptions of which
strings over a given character set are in a
particular language

 Language designers write grammar

 Language implementers use grammar to
know what programs to accept

 Language users use grammar to know how
to write legitimate programs

6/18/2013 12

Regular Expressions

 Simple kind of formal grammar

 Start with a given character set
(―alphabet‖) – a, b, c…

 Each character is a regular expression

 Meaning: set of the one one-letter string
of that character

6/19/2013 13

Regular Expressions

 If x and y are regular expressions, then xy is
a regular expression
 Meaning: set of all strings made from first a

string described by x then a string described by y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.

 If x and y are regular expressions, then x y
is a regular expression
 Meaning: set of strings described by either x or y

 If x={a,ab} and y={c,d} then x y={a,ab,c,d}

6/18/2013 14

Regular Expressions

 If x is a regular expression, then so is (x)
 Meaning is the same as x (helps disambiguate)

 If x is a regular expression, then so is x*
 Meaning: set of strings made from concatenating

zero or more strings from x

If x = {a,ab}

then x* = {"",a,ab,aa,aab,abab,aaa,aaab,…}

 Meaning: {""}, set containing the empty string

6/18/2013 15

Example Regular Expressions

 (01)*1
 The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}

 a*b(a*)
 The set of all strings of a’s and b’s with exactly

one b

 ((01) (10))*
 ?

 Regular expressions (equivalently, regular
grammars) used for lexing, breaking strings
into recognized words

6/18/2013 16

Example: Lexing

 Regular expressions good for describing
lexemes (words) in a programming language

 Identifier = (a b … z A B … Z) (a
 b … z A B … Z 0 1 … 9)*

 Digit = (0 1 … 9)

 Number = 0 (1 … 9)(0 … 9)*
~ (1 … 9)(0 … 9)*

 Keywords: if = if, while = while,…

6/18/2013 17

Implementing Regular Expressions

 Good for answering ―what are all the
strings in the language?‖

 Not so good for answering ―is this
particular string in the language?‖

 Problems with Regular Expressions
 which option to choose

 how many repetitions to make

 Solution: finite state automata

6/18/2013 18

Finite State Automata

 A finite state automata over an alphabet is:

 a directed graph

 a finite set of states defined by the nodes

 edges are labeled with elements of the alphabet,
or empty string; they define state transitions

 some nodes marked as final

 one node marked as start state

6/18/2013 19

Example FSA

0 1 1

0

Start State
Final State

Final State

1

0

1 0

6/19/2013 20

Deterministic FSAs

 A deterministic automata (DFA) has for
every state exactly one edge for each letter

 No edge labeled with

 In general automata may be non-
deterministic (NFA)

 NFA also allows edges labeled by

 DFAs are a specific kind of NFA

6/18/2013 21

DFA Language Recognition

 Think of recognition as a board game: DFA
is board

 You have the string as a deck of cards, one
letter on each card

 Start by placing marker on the start state

6/18/2013 22

DFA Language Recognition

 Move marker from one state to next along
edge indicated by top card in deck; discard
top card

 When you run out of cards,

 if you are in a final state, you win; string is
in language

 if you are not in a final state, you lose;
string is not in language

6/18/2013 23

DFA Language Recognition Summary

 Given a string over alphabet
 Start at start state
 Move over edge labeled with first letter to

new state
 Remove first letter from string
 Repeat until string is gone
 If end in final state then string in language

6/18/2013 24

Example DFA

 Regular expression: (0 1)* 1

 Deterministic FSA

0 1

1

0

6/18/2013 25

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1

0 1

1

0

6/18/2013 26

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 27

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 28

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 29

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 30

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0 1

1

0

6/18/2013 31

Example DFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1

0 1

1

0

6/18/2013 32

 NFA generalizes DFA in two ways:

 Include edges labeled by

 Allows process to non-deterministically
change state

Non-deterministic FSA

0 1

0

6/18/2013 33

 Each state can have zero, one, or more edges
labeled by each letter

 Given a letter, non-deterministically choose
an edge to use

 …

Non-deterministic FSAs

0

0

6/18/2013 34

NFA Language Recognition

 Play the same game as with DFA
 Free move: move across an edge with

empty string label without discarding card
 When you run out of letters, if you are in

final state, you win; string is in language
 You can take one or more moves back and

try again
 If you’ve tried all possible paths without

success, then you lose; string not in
language

6/18/2013 35

Example NFA

 Regular expression: (0 1)* 1

 Non-deterministic automata

0

1

1

6/18/2013 36

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 37

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 38

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 39

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess

0

1

1

6/19/2013 40

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Backtrack

0

1

1

6/18/2013 41

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess again

0

1

1

6/18/2013 42

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess

0

1

1

6/18/2013 43

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Backtrack

Example NFA

0

1

1

6/18/2013 44

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess again

0

1

1

6/18/2013 45

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

0

1

1

6/18/2013 46

Example NFA

 Regular expression: (0 1)* 1

 Accepts string 0 1 1 0 1 ?

 Guess (works this time)

0

1

1

6/18/2013 47

Compilers: Big Picture

 We want to turn strings (code) into
computer-readable instructions

 Done in phases

 Turn strings into abstract syntax trees (lex
and parse)

 Translate abstract syntax trees into
executable instructions (interpret or compile)

6/18/2013 48

Lexing and Parsing

 Converting strings to abstract syntax trees
done in two phases

 Lexing: Convert a string (program text)
into a list of tokens (―words‖ of the
language)

 Parsing: Convert a list of tokens into an
abstract syntax tree

6/18/2013 49

Lexing

 Different syntactic categories of ―words‖:
tokens

 Example: given token categories String, Int,
and Float, "asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float 3.14]

6/18/2013 50

Lexing

 Each category described by regular
expression (with extended syntax)

 Words recognized by (encoding of)
corresponding finite state automaton

 Problem: we want to pull all words out
of a string, not just recognize one word

6/18/2013 51

Lexing

 Modify behavior of DFA

 When we encounter a character in a state
for which there is no transition

 Stop processing the string

 If in an accepting state, return the token
that corresponds to the state, and the
remainder of the string

 If not, fail

 Add recursive layer to get sequence

6/18/2013 52

Example

 s1: return a string

 s2: return an integer

 s3: return a float

.
s3 s2

s0

a-z

0-9

s1

a-z

0-9 0-9

6/18/2013 53

Lex, ocamllex

 Could write the regexp, then translate to
DFA by hand

 Better: Write program to take regexp as
input and automatically generate automata

 The most popular tool for this is Lex

 ocamllex is the OCaml version

6/18/2013 54

How to do it

 To use regular expressions to parse
our input we need:

 Some way to access the input string
— call it a lexing buffer

 Set of regular expressions

 For each regexp, an action to take
when matched

6/18/2013 55

How to do it

 Lexer takes regular expressions and
generates a state machine

 State machine takes lexing buffer and
applies transitions

 When accepting state is reached,
perform appropriate action

6/18/2013 56

Mechanics

 Put table of regexp and corresponding
actions (written in OCaml) into a file
<filename>.mll

 Run ocamllex <filename>.mll

 Produces OCaml code for a lexical
analyzer in<filename>.ml

6/18/2013 57

Sample Input

rule main = parse

 ['0'-'9']+ { print_string "Int\n"}

 | ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}

 | ['a'-'z']+ { print_string "String\n"}

 | _ { main lexbuf }

 {

 let newlexbuf = (Lexing.from_channel stdin) in

 print_string "Ready to lex.\n";

 main newlexbuf

}

6/18/2013 58

General Input

{ header }

let ident = regexp ...

rule entrypoint [arg1... argn] = parse

 regexp { action }

 | ...

 | regexp { action }

and entrypoint [arg1... argn] = parse ...

and ...

{ trailer }

6/18/2013 59

Ocamllex Input

 header and trailer contain arbitrary
OCaml code put at top and bottom of
<filename>.ml

 let ident = regexp ... defines
abbreviations for regexps to use in rules

6/18/2013 60

Ocamllex Input

 <filename>.ml contains one lexing
function per entrypoint
 Name of function is name given for

entrypoint

 Each entry point becomes an Ocaml
function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

 arg1... argn are for use in action

6/18/2013 61

Ocamllex Regular Expressions

 Single quoted characters for letters:
'a'

 _ (underscore): matches any letter

 Eof: special “end_of_file” marker

 Concatenation same as usual

 "string": concatenation of sequence
of characters

 e1 | e2 : choice (as e1 e2)

6/18/2013 62

Ocamllex Regular Expression

 [c1 - c2]: choice of any character
between first and second inclusive, as
determined by character codes

 [^c1 - c2]: choice of any character NOT
in set

 e*: same as before (repetition)

 e+: same as e e*

 e?: option (as e1)

6/18/2013 63

Ocamllex Regular Expression

 e1 # e2: set of characters in e1 but not
in e2; e1 and e2 must describe sets of
characters

 ident: abbreviated regexp, previously
defined by let ident = regexp

 e1 as id: binds the result of e1 to id to
be used in the associated action

6/18/2013 64

Ocamllex Manual

 More details can be found at

http://caml.inria.fr/pub/docs/manual-
ocaml/manual026.html

http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html

6/18/2013 65

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']

let digits = digit +

let lower_case = ['a'-'z']

let upper_case = ['A'-'Z']

let letter = upper_case | lower_case

let letters = letter +

6/18/2013 66

Example : test.mll

rule main = parse

 (digits)'.'digits as f { Float (float_of_string f) }

 | digits as n { Int (int_of_string n) }

 | letters as s { String s}

 | _ { main lexbuf }

 { let newlexbuf = (Lexing.from_channel stdin) in

 print_string "Ready to lex.";

 print_newline ();

 main newlexbuf }

6/18/2013 67

Example

#use "test.ml";;

…

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
result = <fun>

Ready to lex.

hi there 234 5.2

- : result = String "hi"

What happened to the rest?

6/18/2013 68

Example

let b = Lexing.from_channel stdin;;

main b;;

hi 673 there

- : result = String "hi"

main b;;

- : result = Int 673

main b;;

- : result = String "there"

6/18/2013 69

Problem

 How to get lexer to look at more than the
first token at one time?

 Answer: action has to tell it to – with a
recursive call

 Side benefit: can add ―state‖ into lexing

 Note: already used this with the _ case

6/18/2013 70

Example

rule main = parse

 (digits) '.' digits as f { Float
(float_of_string f) :: main lexbuf}

 | digits as n { Int (int_of_string n) ::
main lexbuf }

 | letters as s { String s :: main
lexbuf}

 | eof { [] }

 | _ { main lexbuf }

6/18/2013 71

Example Results

Ready to lex.

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int
234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

6/18/2013 72

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
 (digits) '.' digits as f { Float (float_of_string

f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}

6/18/2013 73

Dealing with comments

 | open_comment { comment lexbuf }

 | eof { [] }

 | _ { main lexbuf }

and comment = parse

 close_comment { main lexbuf }

 | _ { comment lexbuf }

6/18/2013 74

Dealing with nested comments

rule main = parse …
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }

 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }

 | _ { comment depth lexbuf }

