Programming Languages and
Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by
Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

6/17/2013

http://courses.engr.illinois.edu/cs421/

i Type Inference - Example

= Current subst: {6=¢p — ¢}
= Var rule: Solve {—¢ =p—¢ Unification

[f:o—¢; X:B] F f:il—>o [fip—¢; X:B] F X:C
. fro—o>egxiBlEfX: @
[f:o; Xx:BlF({(fX)):¢
[X : Bl F(funf->f(fx)):y
[]F (funx->funf->f(fx)): «a

s a=(B->1);v=0->¢)

6/17/2013 2

i Type Inference - Example

= Current subst: {{=¢, o=¢} 0 {6=0p — ¢}
= Var rule: Solve {—¢ =p—¢ Unification

[f:o—¢; X:B] F f:il—>o [fip—¢; X:B] F X:C
. fro—o>egxiBlEfX: @
[f:o; Xx:BlF({(fX)):¢
[X : Bl F(funf->f(fx)):y
[]F (funx->funf->f(fx)): «a

s a=(B->1);v=0->¢)

6/17/2013 3

i Background for Unification

m [erms (expressions) made from constructors and
variables

= Constructors may be applied to arguments (other
terms) to make new terms

= Variables and constructors with no arguments are
base cases

= Constructors applied to different number of
arguments (arity) considered different

= Build up substitution of terms for variables
= More general than just OCaml!

6/17/2013 4

i Simple Implementation Background

= Term is var or function symbol (possibly const):
type term = Variable of string
Const of (string * term list)

= We need to be able to substitute terms for vars:
let rec subst var_name residue term =
match term with Variable name ->
if var_name = name then residue else term
| Const (c, tys) ->
Const (c, List.map (subst var_name residue)
tys);;

6/17/2013 5

i Unification Problem

Given a set of pairs of terms (“equations”)

{(Sll tl)l (SZI tZ)I Rl (Snl tn)}
(the wnification problem) does there exist

a substitution o (the wnification solution)
of terms for variables such that

o(s;) = o(t),
foralliinl, ..., n?

6/17/2013

i Uses for Unification

= Type inference and type checking

= Pattern matching as in OCAML

= Logic Programming — Prolog and others
= Simple parsing

= Maude (CS422/CS476)

6/17/2013 7

i Unification Algorithm

s letS={(s, ty), (55, &), ..., (5, L))} bea
unification problem.

s Case S = { }: Unif(S) = Identity function
(i.e., no substitution)

m Case S = {(s, t)} U S": Four cases

6/17/2013

i Unification Algorithm

m Case S ={(s, t)} U S": Four cases

= Delete: if s = t (they are the same term)
then Unif(S) = Unif(S’)

s Decompose: if s = f(qy, ..., 9,,) and
t =f(ry, ..., 1) (same f, same m!), then

Unif(S) = Unif({(qy, r1), s (Ams Tm)3 U S)
= Orient: if t is some variable x, and s is not a
variable, Unif(S) = Unif ({(x,s)} U S')

6/17/2013 9

i Unification Algorithm

= Eliminate: if s is some variable X,
and X does not occur in t (the
occurs check), then

s Let ¢ =X ‘—) t
= Let v = Unif(o(S"))
= Unif(S) = {x |»> w(t)} o v

6/17/2013

10

i Tricks for Efficient Unification

= Don't return substitution, do it
incrementally

= Make substitution be constant time

= Requires implementation of terms to use
mutable structures (or possibly lazy
structures)

= We won't discuss these

6/17/2013 11

i Example

= X,Y,z variables, f,g constructors

n S = {(f(x)l f(g(YIZ)))I (g(YIf(Y))I X)}

6/17/2013

12

i Example

= X,Y,z variables, f,g constructors
= S IS nhonempty

n S = {(f(x)l f(g(YIZ)))I (g(YIf(Y))I X)}

6/17/2013

13

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (g(y,f(y)), x)

n S = {(f(x)l f(g(YIZ)))I (g(YIf(Y))I X)}

6/17/2013

14

i Example

= X,Y,z variables, f,g constructors

= Pick a pair: (g(y,f(y))), xX)

= Orient: (x, g(y,f(y)))

= S = {(f(x), f(9(y,2))), (g(y,f(y)), x)}
= -> {(f(x), 1(a(y,2))), (%, 9(y,f(y)))}

6/17/2013

15

i Example

= X,Y,z variables, f,g constructors

= S-> {(f(x)l f(g(YIZ)))I (XI g(YIf(Y)))}

6/17/2013

16

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(x), f(g(y,z)))

= S-> {(f(x)l f(g(YIZ)))I (XI g(YIf(Y)))}

6/17/2013

17

i Example

= X,Y,z variables, f,g constructors

= Pick a pair: (f(x), f(g(y,z)))
= Decompose: (X, 9(y,z))

= S-> {(f(x)l f(g(YIZ)))I (XI g(YIf(Y)))}
m-> {(XI g(YIZ))I (XI g(YIf(Y)))}

6/17/2013

18

i Example

= X,Y,z variables, f,g constructors

= Pick a pair: (x, g(y,f(y)))

= Eliminate: {x [-> g(y,f(y))}

= S ->{(x, 9(y,2)), (X, 9(y,f(y)))}
= -> {(9(y,T(y)), 9(y,2))}

= With substitution {x |-> g(y,f(y))}

6/17/2013

19

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (g(y,f(y)), 9(y,2))

=S-> {(g(YIf(Y))I g(YIZ))}

= With substitution {x |— g(y,f(y))}

6/17/2013

20

i Example

= X,Y,z variables, f,g constructors

= Pick a pair: (g(y,f(y)), 9(y,2))
= Decompose: (y, y) and (f(y), z)

=S-> {(g(YIf(Y))I g(YIZ))}
m-> {(YI Y)I (f(Y)I Z)}

= With substitution {x |— g(y,f(y))}

6/17/2013

21

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (y, y)

O S -> {(YI Y)l (f(Y)I Z)}

= With substitution {x |— g(y,f(y))}

6/17/2013

22

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (y, y)
= Delete

O S -> {(YI Y)l (f(Y)I Z)}
= -> {(f(y), 2)}

= With substitution {x |— g(y,f(y))}

6/17/2013

23

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(y), z)

= S -> {(f(y), 2)}

= With substitution {x |— g(y,f(y))}

6/17/2013

24

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(y), z)

= Orient: (z, f(y))

= S -> {(f(y), 2);

= -> {(z, 1(y))}

= With substitution {x |— g(y,f(y))}

6/17/2013

25

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (z, f(y))

= 5 ->{(z, 1(y))}

= With substitution {x |— g(y,f(y))}

6/17/2013

26

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (z, f(y))

= Eliminate: {z |-> f(y)}

= S ->{(z f(y));

s ->{}

= With substitution
X |=Az [f(y)} (a(y,f(y))) } o4z [- f(y)}

6/17/2013 27

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (z, f(y))

= Eliminate: {z |-> f(y)}

= S ->{(z, 1(y))}

s ->{}

With {x |- g(y,f(y))} 0 {(z |- f(y))}

6/17/2013

28

i Example

S = {(f(x), f(a(y,2))), (a(y,f(y)),x)}
Solved by {x [— g(y,f(y))} o {(z |- f(y))}

fla(y,f(y))) = 1(g(y,f(y)))
X VA

and

a(y,f(y)) = gly,f(y))
X

6/17/2013 29

i Example of Failure: Decompose

= S = {(f(x,9(y)), f(h(y),x))}

= Decompose: (f(x,9(y)), f(h(y),x))
= S -> {(x,h(y)), (a(y),x)}

= Orient: (g(y),x)

= S -> {(x,h(y)), (x,9(y))}

= Eliminate: (x,h(y))

= S -> {(h(y), 9(y))} with {x [— h(y)}
= No rule to apply! Decompose fails!

6/17/2013

30

i Example of Failure: Occurs Check

= S = {(f(x,9(x)), f(h(x),x))}

= Decompose: (f(x,g(x)), f(h(x),x))
= S-> {(th(x))l (g(x)lx)}

= Orient: (g(y),x)

= S-> {(th(x))l (Xlg(x))}

= No rules apply.

6/17/2013

31

i Most General Unifier

" Umfy (f(XIY)If(YIZ))
= Two possible solutions:
s, ={y|-> X, z|->X}
» 0, ={X |->int, y [->int, z |-> int}

= Which solution is better? The more general
one

m 0, = {X |-> int} 0 64, SO &, iSs more general
= Our algorithm produces Most General Unifier

6/17/2013 32

