Programming Languages and Compilers (CS 421)

William Mansky

http://courses.engr.illinois.edu/cs421/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

6/17/2013

Type Inference - Example

- Current subst: $\{\delta \equiv \phi \rightarrow \epsilon\}$
- Var rule: Solve $\zeta \rightarrow \varphi \equiv \varphi \rightarrow \varepsilon$ Unification

[f:
$$\phi \rightarrow \epsilon$$
; x: β] \vdash f: $\zeta \rightarrow \phi$ [f: $\phi \rightarrow \epsilon$; x: β] \vdash x: ζ

... [f:
$$\phi \rightarrow \epsilon$$
; x: β] \vdash fx: ϕ

[f:
$$\delta$$
; x: β] \vdash (f (f x)) : ϵ

[
$$x : \beta$$
] \vdash (fun $f \rightarrow f(fx)$) : γ

[]
$$\vdash$$
 (fun x -> fun f -> f (f x)) : α

Type Inference - Example

- **■** Current subst: $\{\zeta \equiv \varepsilon, \phi \equiv \varepsilon\}$ o $\{\delta \equiv \phi \rightarrow \varepsilon\}$
- Var rule: Solve $\zeta \rightarrow \varphi \equiv \varphi \rightarrow \varepsilon$ Unification

[f:
$$\phi \rightarrow \epsilon$$
; x: β] \vdash f: $\zeta \rightarrow \phi$ [f: $\phi \rightarrow \epsilon$; x: β] \vdash x: ζ

... [f:
$$\phi \rightarrow \epsilon$$
; x: β] \vdash fx: ϕ

[f:
$$\delta$$
; x: β] \vdash (f (f x)) : ϵ

[
$$x : \beta$$
] \vdash (fun $f \rightarrow f(fx)$) : γ

[]
$$\vdash$$
 (fun x -> fun f -> f (f x)) : α

6/17/2013

Background for Unification

- Terms (expressions) made from constructors and variables
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Build up substitution of terms for variables
- More general than just OCaml!

Simple Implementation Background

- Term is var or function symbol (possibly const):
 type term = Variable of string
 | Const of (string * term list)
- We need to be able to substitute terms for vars: let rec subst var_name residue term = match term with Variable name -> if var_name = name then residue else term | Const (c, tys) -> Const (c, List.map (subst var_name residue) tys);;

Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the *unification problem*) does there exist

a substitution σ (the *unification solution*)

of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i in 1, ..., n?

Uses for Unification

- Type inference and type checking
- Pattern matching as in OCAML
- Logic Programming Prolog and others
- Simple parsing
- Maude (CS422/CS476)

-

Unification Algorithm

• Let $S = \{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$ be a unification problem.

Case S = { }: Unif(S) = Identity function (i.e., no substitution)

• Case $S = \{(s, t)\} \cup S'$: Four cases

Unification Algorithm

- Case $S = \{(s, t)\} \cup S'$: Four cases
- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif({(q_1, r_1), ..., (q_m, r_m)} ∪ S')
- Orient: if t is some variable x, and s is not a variable, Unif(S) = Unif ({(x,s)} ∪ S')

Unification Algorithm

- Eliminate: if s is some variable x, and x does not occur in t (the occurs check), then
 - Let $\varphi = x \rightarrow t$
 - Let $\psi = \text{Unif}(\phi(S'))$
 - Unif(S) = $\{x \mid \rightarrow \psi(t)\}\ o \ \psi$

4

Tricks for Efficient Unification

- Don't return substitution, do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

6/17/2013

x,y,z variables, f,g constructors

• $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

- x,y,z variables, f,g constructors
- S is nonempty

• $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), x)

• $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y))), x)
- Orient: (x, g(y,f(y)))
- $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$
- $-> \{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

6/17/2013

x,y,z variables, f,g constructors

• S -> $\{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (f(x), f(g(y,z)))

• S -> $\{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (f(x), f(g(y,z)))
- Decompose: (x, g(y,z))
- S -> $\{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$
- $-> \{(x, g(y,z)), (x, g(y,f(y)))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (x, g(y,f(y)))
- Eliminate: {x |-> g(y,f(y))}
- S -> $\{(x, g(y,z)), (x, g(y,f(y)))\}$
- $-> \{(g(y,f(y)), g(y,z))\}$

• With substitution $\{x \mid -> g(y,f(y))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), g(y,z))

• S -> $\{(g(y,f(y)), g(y,z))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), g(y,z))
- Decompose: (y, y) and (f(y), z)
- S -> $\{(g(y,f(y)), g(y,z))\}$
- -> {(y, y), (f(y), z)}

- x,y,z variables, f,g constructors
- Pick a pair: (y, y)

 $S \rightarrow \{(y, y), (f(y), z)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (y, y)
- Delete
- $S \rightarrow \{(y, y), (f(y), z)\}$
- -> {(f(y), z)}

- x,y,z variables, f,g constructors
- Pick a pair: (f(y), z)

• S -> $\{(f(y), z)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (f(y), z)
- Orient: (z, f(y))
- S -> {(f(y), z)}
- -> {(z, f(y))}

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))

 $S \rightarrow \{(z, f(y))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- Eliminate: {z |-> f(y)}
- $S \rightarrow \{(z, f(y))\}$
- **->** { }

With substitution

$$\{x \mid \to \{z \mid \to f(y)\} (g(y,f(y))) \} o \{z \mid \to f(y)\}$$

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- Eliminate: {z |-> f(y)}
- $S \rightarrow \{(z, f(y))\}$
- **->** { }

With $\{x \mid \rightarrow g(y,f(y))\}\ o \{(z \mid \rightarrow f(y))\}\$

S = {(f(x), f(g(y,z))), (g(y,f(y)),x)}
Solved by {x
$$| \rightarrow g(y,f(y))$$
} o {(z $| \rightarrow f(y)$)}
 $f(\underline{g(y,f(y))}) = f(g(y,\underline{f(y)}))$
 x

and

$$g(y,f(y)) = g(y,f(y))$$

6/17/2013

Example of Failure: Decompose

- $S = \{(f(x,g(y)), f(h(y),x))\}$
- Decompose: (f(x,g(y)), f(h(y),x))
- S -> $\{(x,h(y)), (g(y),x)\}$
- Orient: (g(y),x)
- $S \rightarrow \{(x,h(y)), (x,g(y))\}$
- Eliminate: (x,h(y))
- S -> $\{(h(y), g(y))\}$ with $\{x \mid \rightarrow h(y)\}$
- No rule to apply! Decompose fails!

Example of Failure: Occurs Check

- $S = \{(f(x,g(x)), f(h(x),x))\}$
- Decompose: (f(x,g(x)), f(h(x),x))
- $S \rightarrow \{(x,h(x)), (g(x),x)\}$
- Orient: (g(y),x)
- $S \rightarrow \{(x,h(x)), (x,g(x))\}$
- No rules apply.

4

Most General Unifier

- Unify (f(x,y),f(y,z))
- Two possible solutions:
 - $\sigma_1 = \{y \mid -> x, z \mid -> x\}$
 - $\sigma_2 = \{x \mid -> int, y \mid -> int, z \mid -> int\}$
- Which solution is better? The more general one
- $\sigma_2 = \{x \mid -> int\} \text{ o } \sigma_1$, so σ_1 is more general
- Our algorithm produces Most General Unifier