
6/6/2013 1

Programming Languages and
Compilers (CS 421)

 William Mansky

http://courses.engr.illinois.edu/cs421/su2013/

Based in part on slides by Mattox Beckman, as updated by

Vikram Adve, Gul Agha, Elsa Gunter, and Dennis Griffith

http://courses.engr.illinois.edu/cs421/su2013/

6/6/2013 2

Variants – Algebraic Data Types

 Core of user-defined types in Ocaml

 Support enumerations, disjoint unions,
recursive types

 Write functions with pattern matching,
recursion

 Already seen one example: lists

6/6/2013 3

Variants - Syntax (slightly simplified)

 type name = C1 [of ty1] | . . . | Cn [of tyn]

 Introduce a type called name

 C1 : ty1 -> name

 Ci is called a constructor; if the optional type
argument is omitted, it is called a constant

 Constructors are the basis of almost all
pattern matching

6/6/2013 4

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

They are ordered by their declaration order

6/6/2013 5

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday

 | Thursday | Friday | Saturday | Sunday;;

type weekday =

 Monday

 | Tuesday

 | Wednesday

 | Thursday

 | Friday

 | Saturday

 | Sunday

6/6/2013 6

Functions over Enumerations

let day_after day = match day with

 Monday -> Tuesday

 | Tuesday -> Wednesday

 | Wednesday -> Thursday

 | Thursday -> Friday

 | Friday -> Saturday

 | Saturday -> Sunday

 | Sunday -> Monday;;

 val day_after : weekday -> weekday = <fun>

6/6/2013 7

Functions over Enumerations

let rec days_later n day =

 match n with 0 -> day

 | _ -> if n > 0

 then day_after (days_later (n - 1) day)

 else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday
= <fun>

6/6/2013 8

Functions over Enumerations

days_later 2 Tuesday;;

- : weekday = Thursday

days_later (-1) Wednesday;;

- : weekday = Tuesday

days_later (-4) Monday;;

- : weekday = Thursday

6/6/2013 9

Disjoint Union Types

 Disjoint union of types, with some possibly
occurring more than once

 We can also add in some new singleton
elements

ty1 ty2 ty1

6/6/2013 10

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

let x = DriversLicense 123;;
val x : id = DriversLicense 123
let check_id id = match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>

6/6/2013 11

Polymorphism in Variants

 The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;

type 'a option = Some of 'a | None

 Used to encode partial functions

 Often can replace the raising of an exception

6/6/2013 12

Functions over option

let rec first p list =

 match list with [] -> None

 | (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>

first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4

first (fun x -> x > 5) [1;3;4;2;5];;

- : int option = None

6/6/2013 13

Mapping over Variants

let optionMap f opt =

 match opt with None -> None

 | Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap

 (fun x -> x - 2)

 (first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

6/6/2013 14

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option ->

'b = <fun>

let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>

6/6/2013 15

Recursive Types

 The type being defined may be a component
of itself

ty ty’ ty

Recursive Type Example 1: Lists

 type ‘a mylist = Nil | Cons of (‘a * ‘a mylist)

 Real lists use nicer syntax, but have the
same behavior

6/6/2013 16

6/6/2013 17

Recursive Type Example 2: Trees

type int_Bin_Tree =

 Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

6/6/2013 18

Recursive Data Type Values

let bin_tree =

 Node (Node (Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

6/6/2013 19

Recursive Data Type Values

 bin_tree = Node

 Node Leaf (-7)

Leaf 3 Leaf 6

let bin_tree =

 Node (Node (Leaf 3, Leaf 6),Leaf (-7));;

6/6/2013 20

Recursive Functions

let rec first_leaf_value tree =

 match tree with (Leaf n) -> n

 | Node (left_tree, right_tree) ->

 first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int =
<fun>

let left = first_leaf_value bin_tree;;

val left : int = 3

6/6/2013 21

Mapping over Recursive Types

let rec ibtreeMap f tree =

 match tree with (Leaf n) -> Leaf (f n)

 | Node (left_tree, right_tree) ->

 Node (ibtreeMap f left_tree,

 ibtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree ->
int_Bin_Tree = <fun>

6/6/2013 22

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

6/6/2013 23

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

 match tree with Leaf n -> leafFun n

 | Node (left_tree, right_tree) ->

 nodeFun

 (ibtreeFoldRight leafFun nodeFun left_tree)

 (ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

6/6/2013 24

Folding over Recursive Types

let tree_sum =

 ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>

tree_sum bin_tree;;

- : int = 2

General Folding

 Replace constructors with functions that take
recursively computed values

 Gives a bottom up traversal like fold_right

 Extra work to do top down (fold_left)

6/6/2013 25

6/6/2013 26

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a

 | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree

 | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a
treeList

and 'a treeList = Last of 'a tree | More of ('a
tree * 'a treeList)

6/6/2013 27

Mutually Recursive Types - Values

let tree =

 TreeNode

 (More (TreeLeaf 5,

 (More (TreeNode

 (More (TreeLeaf 3,

 Last (TreeLeaf 2))),

 Last (TreeLeaf 7)))));;

6/6/2013 28

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2

6/6/2013 29

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

6/6/2013 30

Mutually Recursive Functions

let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

6/6/2013 31

Mutually Recursive Functions

fringe tree;;

- : int list = [5; 3; 2; 7]

6/6/2013 32

Nested Recursive Types

type 'a labeled_tree =

 TreeNode of ('a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

6/6/2013 33

Nested Recursive Type Values

let ltree =

 TreeNode (5,

 [TreeNode (3, []);

 TreeNode (2, [TreeNode (1, []);

 TreeNode (7, [])]);

 TreeNode (5, [])]);;

6/6/2013 34

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

6/6/2013 35

Nested Recursive Type Values

5

3 2 5

1 7

6/6/2013 36

Mutually Recursive Functions

let rec flatten_tree labtree =

 match labtree with TreeNode (x,treelist)

 -> x :: flatten_tree_list treelist

 and flatten_tree_list treelist =

 match treelist with [] -> []

 | labtree::labtrees

 -> flatten_tree labtree

 @ flatten_tree_list labtrees;;

6/6/2013 37

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

 Nested recursive types lead to mutually
recursive functions

6/6/2013 38

Mutually Recursive Functions

flatten_tree (TreeNode (5, [TreeNode (1,
[]); TreeNode (2, [])]));;

5 :: flatten_tree_list [TreeNode (1, []);
TreeNode (2, [])]

5 :: (flatten_tree (TreeNode (1, []))) @
(flatten_tree_list ([TreeNode (2, [])]))

[5; 1] @ (flatten_tree_list ([TreeNode (2, [])))

[5; 1] @ flatten_tree (TreeNode (2, [])) @ []

[5; 1] @ [2] @ [] = [5; 1; 2]

6/6/2013 39

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
 [1; 1; 1; 1; ...]

match ones with x::xs -> x;;
Warning: …
- : int = 1

6/6/2013 40

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
 [1; 1; 1; 1; ...]

let other_ones = match ones with x::xs ->

xs;;
Warning: …
- : int list = [1; 1; 1; 1; …]

other_ones = ones;;
(* runs forever – don’t do this! *)

6/6/2013 41

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)

 and tree_list = [lab_tree; lab_tree];;

val lab_tree : int labeled_tree =

 TreeNode (2, [TreeNode(...); TreeNode(...)])

val tree_list : int labeled_tree list =

 [TreeNode (2, [TreeNode(...);
TreeNode(...)]);

 TreeNode (2, [TreeNode(...);
TreeNode(...)])]

6/6/2013 42

Infinite Recursive Values

match lab_tree

 with TreeNode (x, _) -> x;;

- : int = 2

6/6/2013 43

Records

 Records serve the same programming
purpose as tuples

 Provide better documentation, more
readable code

 Allow components to be accessed by label
instead of position

 Labels (aka field names must be unique)

 Fields accessed by suffix dot notation

6/6/2013 44

Record Types

 Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

 person is the type being introduced

 name, ss and age are the labels, or fields

6/6/2013 45

Record Values

 Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =

 {name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

6/6/2013 46

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =

 {name = "Joseph Martins"; ss = (325, 40,
1276); age = 22}

student = teacher;;

- : bool = false

6/6/2013 47

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"

val age : int = 102

val s3 : int = 6244

6/6/2013 48

Record Field Access

let soc_sec = teacher.ss;;

val soc_sec : int * int * int = (119,
73, 6244)

6/6/2013 49

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>

birthday teacher;;

- : person = {name = "Elsa L. Gunter"; ss =
(119, 73, 6244); age = 103}

6/6/2013 50

New Records from Old

let new_id name soc_sec person =

 {person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person
-> person = <fun>

new_id "Giuseppe Martin" (523,04,6712)
student;;

- : person = {name = "Giuseppe Martin"; ss =
(523, 4, 6712); age = 22}

