
6/3/2013 1

Programming Languages and
Compilers (CS 421)

 William Mansky

http://courses.engr.illinois.edu/cs421/su2013/

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa Gunter

http://www.cs.uiuc.edu/class/cs421/
http://courses.engr.illinois.edu/cs421/su2013/

6/3/2013 2

Lambda Lifting

 Arguments to functions are evaluated
immediately; function bodies are not

let add_two = (+) (print_string "test\n"; 2);;

test

val add_two : int -> int = <fun>

let add2 = (* lambda lifted *)

 fun x -> (+) (print_string "test\n"; 2) x;;

val add2 : int -> int = <fun>

6/3/2013 3

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
 Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

6/3/2013 4

Continuation Passing Style

 A programming technique for all forms
of “non-local” control flow:

 non-local jumps

 exceptions

 general conversion of non-tail calls to tail
calls

 Essentially it’s a higher-order version of
GOTO

6/3/2013 5

Tail Calls

 Tail Position: A subexpression of an
expression e that, if evaluated, will be
returned as the value of e

 if (x>3) then x + 2 else x - 4

 let x = 5 in x + 4

 Tail Call: A function call that occurs in
tail position

 if (h x) then f x else (x + g x)

6/3/2013 6

Exercise: Tail Recursion

let rec app fl x =

 match fl with [] -> x

 | (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

6/3/2013 7

Exercise: Tail Recursion

let rec app fl x =

 match fl with [] -> x

 | (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs (f acc)
 in app_aux fs x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

Does this work?

6/3/2013 8

Exercise: Tail Recursion

let rec app fl x =

 match fl with [] -> x

 | (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

 app [fun x -> x * x; fun x -> x – 1] 10;;

 f x y;; (* f(x, y) *)

6/3/2013 9

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

 app [fun x -> x * x; fun x -> x – 1] 10;;

 let rec app_aux fl acc = … in app_aux [fun x
-> x * x; fun x -> x – 1] (fun y -> y) 10

6/3/2013 10

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

 (app_aux [fun x -> x * x; fun x -> x – 1]
(fun y -> y)) 10

 ((app_aux [fun x -> x – 1]) (fun z -> z * z))
10

6/3/2013 11

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

 ((app_aux [fun x -> x – 1]) (fun z -> z * z))
10

 app_aux [] (fun a -> (fun z -> z * z) ((fun x
-> x - 1) a)) 10

6/3/2013 12

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

 (fun a -> (fun z -> z * z) ((fun x -> x - 1)
a)) 10

 (fun z -> z * z) ((fun x -> x - 1) a)

in {a -> 10}

6/3/2013 13

6/3/2013 14

Continuations

 Idea: Use functions to represent the control
flow of a program

 Method: Each procedure takes a function as
an argument to which to pass its result;
outer procedure “returns” no result

 Function receiving the result called a
continuation

 Continuation acts as “accumulator” for work
still to be done

6/3/2013 15

Example of Tail Recursion & CPS

let app fs x =

 let rec app_aux fl acc=

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let rec appk fl x k =

 match fl with [] -> k x

 | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;

val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

6/3/2013 16

Example of CPS

let rec app fl x =

 match fl with [] -> x

 | (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let rec appk fl x k =

 match fl with [] -> k x

 | (f :: rem_fs) -> appk rem_fs x (fun r -> k (f r));;

val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b =
<fun>

6/3/2013 17

Continuation Passing Style

 A function is in CPS if:

 All calls are tail calls

 At tail positions, it passes its return value to
either a CPS function (possibly itself) or the
continuation

Why CPS?

 Makes order of evaluation explicitly clear

 Allocates variables (to become registers) for each
step of computation

 Essentially converts functional programs into
imperative ones

 Major step for compiling to assembly or byte
code

 Tail recursion easily identified

 Strict forward recursion converted to tail recursion

 Not all functions should be written in CPS!

6/3/2013 18

Simple Functions Taking Continuations

 Given a primitive operation, can convert it to
pass its result forward to a continuation

 Examples:

let subk x y k = k(x + y);;

val subk : int -> int -> (int -> 'a) -> 'a = <fun>

let eqk x y k = k(x = y);;

val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

6/3/2013 19

6/3/2013 20

Example

 Simple reporting continuation:

let report x = (print_int x; print_newline ());;

val report : int -> unit = <fun>

 Simple function using a continuation:

let addk a b k = k (a + b);;

val addk : int -> int -> (int -> ’a) -> ’a = <fun>

addk 20 22 report;;

42

- : unit = ()

Nesting Continuations

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

let add_three x y z = let p = x + y in p + z;;

val add_three : int -> int -> int -> int = <fun>

let add_three_k x y z k =

 addk x y (fun p -> addk p z k);;

val add_three_k : int -> int -> int -> (int -> 'a)
-> 'a = <fun>

6/3/2013 21

6/3/2013 22

Nesting CPS

let rec lengthk list k = match list with [] -> k 0

 | x :: xs -> lengthk xs (fun r -> k (r + 1));;

val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>

let rec lengthk list k = match list with [] -> k 0

 | x :: xs -> lengthk xs (fun r -> addk r 1 k);;

val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>

lengthk [2;4;6;8] report;;

4

- : unit = ()

6/3/2013 23

Recursive Functions in CPS

 Recall:

let rec factorial n =

 if n = 0 then 1 else n * factorial (n - 1);;

 val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

6/3/2013 24

Recursive Functions in CPS

 Store each intermediate value (pseudo-imperative)

let rec factorial n =

 let b = (n = 0) in

 if b then 1 else

 let s = n – 1 in

 let r = factorial s in n * r;;

val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

Converting Lets to Functions

 let x = e1 in e2

 let f x = e2;; f e1

 let f = fun x -> e2;; f e1

 (fun x -> e2) e1

 (fun x -> e2) is like a continuation, so we
can pass it to the CPS version of e1:

 e1k (fun x -> e2)

6/3/2013 25

6/3/2013 26

Recursive Functions in CPS

let rec factorial n =

 let b = (n = 0) in if b then 1 else

 let s = n – 1 in

 let r = factorial s in n * r;;

val factorial : int -> int = <fun>

let rec factorialk n k =
 eqk n 0 (fun b -> if b then k 1 else
 subk n 1 (fun s ->
 factorialk s (fun r -> timesk n r k)))
val factorialk : int -> (int -> ‘a) -> ‘a = <fun>

6/3/2013 27

CPS Transformation

 Step 1: Add continuation argument to any function
definition:

 let f arg = e let f arg k = e

 Idea: Every function takes an extra parameter
saying where the result goes

 Step 2: Name intermediate expressions by let
bindings

 Afterwards functions/match/if-then-else only
applied to constants and variables

 if x = 0 then e1 else e2 let b = (x=0) in

 if b then e1 else e2

6/3/2013 28

CPS Transformation

 Step 3: A simple expression in tail position should
be passed to a continuation instead of returned:

 a k a

 a must be a constant or variable

 “simple” = “no available function calls”

 Step 4: Pass the current continuation to every
function call in tail position

 f arg f arg k

 The function “isn’t going to return,” so we need
to tell it where to put the result

 Change to CPS version (e.g., add addk)

CPS Transformation

 Step 5: Convert let bindings into functions

 let x = e1 in e2 (fun x -> e2) e1

 Step 6: Pass those continuations to the appropriate
arguments

 Again, change functions into CPS versions

 (fun x -> e) (f a b) fk a b (fun x -> e)

6/3/2013 29

6/3/2013 30

Example

Before:

let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

Step 1:

let rec add_listk lst k =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x (add_list xs);;

6/3/2013 31

Example

Before:

let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

Step 2:

let rec add_listk lst k =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> let r = add_list xs

 in (+) x r;;

6/3/2013 32

Example

Before:

let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

Step 3:

let rec add_listk lst k =

match lst with

 [] -> k 0

| 0 :: xs -> add_list xs

| x :: xs -> let r = add_list xs

 in (+) x r;;

6/3/2013 33

Example

Before:

let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

Step 4:

let rec add_listk lst k =

match lst with

 [] -> k 0

| 0 :: xs -> add_listk xs k

| x :: xs -> let r = add_list xs

 in addk x r k;;

6/3/2013 34

Example

Before:

let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

Step 5:

let rec add_listk lst k =

match lst with

 [] -> k 0

| 0 :: xs -> add_listk xs k

| x :: xs -> (fun r -> addk x r k)

 (add_list xs);;

6/3/2013 35

Example

Before:

let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

Step 6:

let rec add_listk lst k =

match lst with

 [] -> k 0

| 0 :: xs -> add_listk xs k

| x :: xs -> add_listk xs

 (fun r -> addk x r k);;

Example Execution

add_listk [1,2] k

= add_listk [2] (fun r1 -> addk 1 r1 k)

= add_listk [] (fun r2 -> addk 2 r2 k1)

= (fun r2 -> addk 2 r2 k1) 0 = addk 2 0 k1

= k1 (2+0) = (fun r1 -> addk 1 r1 k) 2

= addk 1 2 k = k (1+2) = k 3

6/3/2013 36

k1

Other Uses for Continuations

 CPS designed to preserve order of evaluation

 Continuations used to express order of
evaluation

 Can be used to change order of evaluation

 Implements:

 Exceptions and exception handling

 Co-routines

 (pseudo) threads

6/3/2013 37

Multiple Return Types

 let smart_div x y = if y = 0. then “NaN” else
x /. y;;

6/4/2013 38

Multiple Return Types

 let smart_div x y kf ks = if y = 0. then ks
“NaN” else kf x /. y;;

val smart_div : float -> float -> (float -> ‘a) ->
(string -> ‘a) -> ‘a

6/4/2013 39

Multiple Return Types

 smart_div 4. 2. (fun x -> print_float x) (fun
x -> print_string x);;

2.

- : unit = ()

 smart_div 4. 0. (fun x -> print_float x) (fun
x -> print_string x);;

NaN

- : unit = ()

6/4/2013 40

6/3/2013 41

Exceptions - Example

exception Zero;;

exception Zero

let rec list_mult_aux list =

 match list with [] -> 1

 | x :: xs ->

 if x = 0 then raise Zero

 else x * list_mult_aux xs;;

val list_mult_aux : int list -> int = <fun>

6/3/2013 42

Exceptions - Example

let list_mult list =

 try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>

list_mult [3;4;2];;

- : int = 24

list_mult [7;0;4];;

- : int = 0

list_mult_aux [7;0;4];;

Exception: Zero.

6/3/2013 43

Exceptions

 When an exception is raised

 The current computation is aborted

 Control is “thrown” back up the call
stack until a matching handler is
found

 All the intermediate calls waiting for a
return value are thrown away

6/3/2013 44

Implementing Exceptions

let multkp m n k =

 let r = m * n in

 (print_string "product result: ";

 print_int r; print_string "\n";

 k r);;

val multkp : int -> int -> (int -> 'a) -> 'a =
<fun>

(instrumented so we can see mult ops)

6/3/2013 45

Implementing Exceptions

let rec list_multk_aux list k kexcp =

 match list with [] -> k 1

 | x :: xs -> if x = 0 then kexcp 0

 else list_multk_aux xs

 (fun r -> multkp x r k) kexcp;;

val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)
-> 'a = <fun>

let rec list_multk list k = list_multk_aux list k k;;

val list_multk : int list -> (int -> 'a) -> 'a = <fun>

6/3/2013 46

Implementing Exceptions

list_multk [3;4;2] report;;

product result: 2

product result: 8

product result: 24

24

- : unit = ()

list_multk [7;4;0] report;;

0

- : unit = ()

6/3/2013 47

Another CSP Example

let add a b k = print_string "Add "; k (a + b);;

let sub a b k = print_string "Sub "; k (a - b);;

let report n = print_string "Answer is: ";

 print_int n;

 print_newline ();;

let idk n k = k n;;

type calc = Add of int | Sub of int

6/3/2013 48

A Small Calculator

let rec eval lst k =

 match lst with

 (Add x) :: xs -> eval xs (fun r -> add r x k)

| (Sub x) :: xs -> eval xs (fun r -> sub r x k)

| [] -> k 0;;

eval [Add 20; Sub 5; Sub 7; Add 3; Sub 5]
report;;

Sub Add Sub Sub Add Answer is: 6

6/3/2013 49

Composing Continations

 Problem: Suppose we want to do all additions before any

subtractions

let ordereval lst k =

let rec aux lst ka ks = match lst with

| (Add x) :: xs -> aux xs (fun r k -> add r x ka k) ks

| (Sub x) :: xs -> aux xs ka (fun r k -> sub r x ks k)

| [] -> ka 0 ks k

in

aux lst idk idk

6/3/2013 50

Sample Run

ordereval [Add 20; Sub 5; Sub 7; Add 3;
Sub 5] report;;

Add Add Sub Sub Sub Answer is: 6

6/3/2013 51

Execution Trace

ordereval [Add 20; Sub 5; Sub 7] report

aux [Add 20; Sub 5; Sub 7] idk idk report

aux [Sub 5; Sub 7]

 (fun r1 k1 -> add 20 r1 idk k1) idk report

aux [Sub 7] (fun r1 k1 -> add r1 20 idk k1)

 (fun r2 k2 -> sub r2 5 idk k2) report

aux [] (fun r1 k1 -> add r1 20 idk k1)

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

6/3/2013 52

Execution Trace

aux [] (fun r1 k1 -> add r1 20 idk k1)

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

(* Start calling the continuations *)

(fun r1 k1 -> add r1 20 idk k1)

 0

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

6/3/2013 53

Execution Trace

(fun r1 k1 -> add r1 20 idk k1)

 0

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

add 0 20 idk (* remember idk n k = k n *)

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

6/3/2013 54

Execution Trace

add 0 20 idk (* remember idk n k = k n *)

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

idk 20

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

6/3/2013 55

Execution Trace

idk 20

 (fun r3 k3 -> sub r3 7

 (fun r2 k2 -> sub r2 5 idk k2) k3)

 report

(fun r3 k3 -> sub r3 7 (fun r2 k2 -> sub r2 5 idk k2) k3)

 20 report

sub 20 7 (fun r2 k2 -> sub r2 5 idk k2) report

(fun r2 k2 -> sub r2 5 idk k2) 13 report

sub 13 5 idk report

idk 8 report ---> report 8

