
5/29/2013 1

Programming Languages and
Compilers (CS 421)

 William Mansky

http://courses.engr.illinois.edu/cs421/su2013/

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa Gunter

http://courses.engr.illinois.edu/cs421/su2013/

5/29/2013 2

Recursive Functions

let rec factorial n =

 if n = 0 then 1 else n * factorial (n - 1);;

 val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

(* rec is needed for recursive function
declarations *)

5/29/2013 3

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
 match n (* pattern matching for cases *)
 with 0 -> 0 (* base case *)
 | n -> (2 * n - 1) (* recursive case *)
 + nthsq (n - 1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

5/29/2013 4

Recursion and Induction

let rec nthsq n = match n with 0 -> 0

 | n -> (2 * n - 1) + nthsq (n - 1) ;;

 Base case is the last case; it stops the computation

 Recursive call must be to arguments that are
somehow smaller - must progress to base case

 if or match must contain base case

 Failure of these may cause failure of termination

5/29/2013 5

Lists

 Simple recursive (“algebraic”) datatype

 Unlike tuples, lists are type homogeneous
(all elements same type) but have varying
length

5/29/2013 6

Lists

 List can take one of two forms:

 Empty list, written []

 Non-empty list, written x :: xs

 x is head element, xs is tail list, :: called

“cons”

 Syntactic sugar: [x] == x :: []

 [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

5/29/2013 7

Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;
1]

5/29/2013 8

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:

 let bad_list = [1; 3.2; 7];;

 ^^^

This expression has type float but is here
used with type int

5/29/2013 9

Question

 Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3, 4); (3.2, 5); (6, 7.2)]

4. [[“hi”; “there”]; [“whatcha”]; [];
[“doin”]]

5/29/2013 10

Answer

 Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3, 4); (3.2, 5); (6, 7.2)]

4. [[“hi”; “there”]; [“whatcha”]; [];
[“doin”]]

 3 is invalid because of last pair

5/29/2013 11

Structural Recursion : List Example

let rec length list = match list

 with [] -> 0 (* Nil case *)

 | (x :: xs) -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

- : int = 4

 Nil case [] is base case

 Cons case recurses on component list xs

5/29/2013 12

Structural Recursion

 Functions on recursive datatypes (e.g. lists)
tend to be recursive

 Recursion over recursive datatypes generally
by structural recursion

 Recursive calls made to components of structure
of the same recursive type

 Base cases of recursive types stop the recursion
of the function

5/29/2013 13

Functions Over Lists

let rec double_up list =

 match list

 with [] -> [] (* pattern before ->,

 expression after *)

 | (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;

val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;
1; 1; 1]

5/29/2013 14

Functions Over Lists

let words = double_up ["hi"; "there"];;

val words : string list = ["hi"; "hi"; "there"; "there"]

let rec rev1 list =

 match list

 with [] -> []

 | (x::xs) -> rev1 xs @ [x];; (* add x at the end *)

val rev1 : 'a list -> 'a list = <fun>

rev1 words;;

- : string list = ["there"; "there"; "hi"; "hi"]

5/29/2013 15

Functions Over Lists

let rec map f list =

 match list

 with [] -> []

 | (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

- : int list = [12; 7; 4; 2; 1; 0; 0]

5/29/2013 16

Mapping Recursion

 One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list

 with [] -> []

 | x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

5/29/2013 17

Mapping Recursion

 Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =

 List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

 Same function, but no rec

5/29/2013 18

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> fun s -> print_string s)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

5/29/2013 19

Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

5/29/2013 20

Folding Recursion

 Another common recursion pattern “folds”
an operation over elements of the structure

let rec multList list = match list

 with [] -> 1

 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

 Computes: (2 * (4 * (6 * 1)))

5/29/2013 21

Encoding Recursion with Fold

let rec multList list = match list with

 [] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

 Base Case Operation Recursive Call

let multList list =

 fold_right (fun x p -> x * p) list 1;;

val append : 'a list -> 'a list -> 'a list = <fun>

multList [2;4;6];;

- : int = 48

5/29/2013 22

Forward Recursion

 Structural recursion: split input into
components, recurse

 One kind of structural recursion is Forward
Recursion: recurse at the front

 Split input into components

 Recursive call on all recursive components

 Build final result from partial results

 Wait until the whole structure has been
traversed to start building the answer

5/29/2013 23

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec rev1 list =
 match list
 with [] -> []
 | (x::xs) -> rev1 xs @ [x];;
val rev1 : 'a list -> 'a list = <fun>

5/29/2013 24

Forward Recursion: More Examples

let rec addList list = match list with
 [] -> 0 | x::xs -> x + addList xs;;
val addList : int list -> int = <fun>
addList [2;3;4];;
- : int = 9
let rec multList list = match list with
 [] -> 1 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;3;4];;
- : int = 24

5/29/2013 25

Folding - Forward Recursion

let addList list = fold_right (+) list 0;;

val addList : int list -> int = <fun>

addList [2;3;4];;

- : int = 9

let multList list = fold_right (*) list 1;;

val multList : int list -> int = <fun>

multList [2;3;4];;

- : int = 24

fold_right encapsulates forward recursion

5/29/2013 26

How long will it take?

 Recall the big-O notation from CS 225 and
CS 273

 Question: given input of size n, how long to
generate output?

 Express output time in terms of input size,
omit constants and take biggest power

5/29/2013 27

How long will it take?

Common big-O times:

 Constant time O (1)

 input size doesn’t matter

 Linear time O (n)

 double input double time

 Quadratic time O (n2)

 double input quadruple time

 Exponential time O (2n)

 increment input double time

5/29/2013 28

Linear Time

 Expect most list operations to take
linear time O (n)

 Each step of the recursion can be done
in constant time

 Each step makes only one recursive call

 List example: multList, append

 Integer example: factorial

5/29/2013 29

Quadratic Time

 Each step of the recursion takes time
proportional to input

 Each step of the recursion makes only one
recursive call.

 List example:

let rec rev1 list = match list
 with [] -> []
 | (x::xs) -> rev1 xs @ [x];;
val rev1 : 'a list -> 'a list = <fun>

5/29/2013 30

Exponential running time

 Hideous running times on input of any size

 Each step of recursion takes constant time

 Each recursion makes two recursive calls

 Easy to accidentally write exponential code

for functions that can be linear

5/29/2013 31

Exponential running time

let rec naiveFib n = match n

 with 0 -> 0

 | 1 -> 1

 | _ -> naiveFib (n-1) + naiveFib (n-2);;

val naiveFib : int -> int = <fun>

5/29/2013 32

Normal

call

h

g

f

…

Writing Fast Functions

 When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

5/29/2013 33

Normal

call

h

g

f

…

An Important Optimization

 When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

 What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

5/29/2013 34

Tail

call

h

f

…

An Important Optimization

 When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

 What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

 Then h can return directly to f
instead of g

5/29/2013 35

Tail Recursion

 A recursive program is tail recursive if all
recursive calls are tail calls

 Tail recursive programs may be implemented
as loops, removing the function call
overhead for the recursive calls

 Tail recursion generally requires extra
“accumulator” arguments to pass partial
results – build answer as we go

 May require an auxiliary function

5/29/2013 36

Tail Recursion - Example

let rec rev_aux list revlist =

 match list with [] -> revlist

 | x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

 What is its running time?

5/29/2013 37

Tail Recursion - Example

let rec rev_aux list revlist =

 match list with [] -> revlist

 | x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

 What is its running time? O(n)

5/29/2013 38

Comparison

 rev1 [1,2,3] =

 (rev1 [2,3]) @ [1] =

 ((rev1 [3]) @ [2]) @ [1] =

 (((rev1 []) @ [3]) @ [2]) @ [1] =

 (([] @ [3]) @ [2]) @ [1]) =

 ([3] @ [2]) @ [1] =

 (3:: ([] @ [2])) @ [1] =

 [3,2] @ [1] =

 3 :: ([2] @ [1]) =

 3 :: (2:: ([] @ [1])) = [3, 2, 1]

5/29/2013 39

Comparison

 rev [1,2,3] =

 rev_aux [1,2,3] [] =

 rev_aux [2,3] [1] =

 rev_aux [3] [2,1] =

 rev_aux [] [3,2,1] = [3,2,1]

5/29/2013 40

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f (…(f (f a x1) x2)…) xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1 (f x2 (…(f xn b)…))

5/29/2013 41

Folding - Tail Recursion

let rec rev_aux list revlist =

 match list with [] -> revlist

 | x :: xs -> rev_aux xs (x::revlist);;

let rev list = rev_aux list [];;

let rev list =

 fold_left

 (fun l x -> x :: l) //comb op

 [] //accumulator cell

 list;;

5/29/2013 42

Folding

 Can replace recursion by fold_right in most
forward recursive definitions

 Can replace recursion by fold_left in most
tail recursive definitions

5/30/2013 43

Map from Fold

let map f list =

 fold_right (fun x y -> f x :: y) list [];;

val map : ('a -> 'b) -> 'a list -> 'b list =
<fun>

map ((+) 1) [1;2;3];;

- : int list = [2; 3; 4]

 Can you write fold_right (or fold_left)
with just map? How, or why not?

5/30/2013 44

Higher Order Functions

 A function is higher-order if it takes a
function as an argument or returns one as
a result

 Example:

let compose f g = fun x -> f (g x);;

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->
'b = <fun>

 The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

5/30/2013 45

Partial Application

(+);;

- : int -> int -> int = <fun>

(+) 2 3;;

- : int = 5

let plus_two = (+) 2;;

val plus_two : int -> int = <fun>

plus_two 7;;

- : int = 9

 Patial application also called sectioning

5/30/2013 46

Lambda Lifting

 You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;

test

val add_two : int -> int = <fun>

let add2 = (* lambda lifted *)

 fun x -> (+) (print_string "test\n"; 2) x;;

val add2 : int -> int = <fun>

5/30/2013 47

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
 Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

5/30/2013 48

Partial Application and “Unknown Types”

 Consider compose plus_two:

let f1 = compose plus_two;;

val f1 : ('_a -> int) -> '_a -> int = <fun>

 Compare to lambda lifted version:

let f2 = fun g -> compose plus_two g;;

val f2 : ('a -> int) -> 'a -> int = <fun>

 What is the difference?

5/30/2013 49

Partial Application and “Unknown Types”

 ‘_a can only be instantiated once for an expression

f1 plus_two;;

- : int -> int = <fun>

f1 List.length;;

Characters 3-14:

 f1 List.length;;

 ^^^^^^^^^^^

This expression has type 'a list -> int but is here used
with type int -> int

5/30/2013 50

Partial Application and “Unknown Types”

 ‘a can be repeatedly instantiated

f2 plus_two;;

- : int -> int = <fun>

f2 List.length;;

- : '_a list -> int = <fun>

