
Programming Languages and
Compilers (CS 421)

Dennis Griffith
0207 SC, UIUC

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha, and Elsa Gunter

How to encode Objects with
Functions?

•  Functional Languages have fairly
straightforward semantics

•  Object Oriented Languages are more
common

•  Problem: How to encode in functional
language?
– To understand their semantics
– To be able to simulate objects in a

language without them

What is an Object?
•  Data (state) and functions (interface) are

grouped together.
•  Functions have their own local state
•  Objects can send and receive messages
•  Objects can refer to themselves

•  Object Oriented Programming is a

programming language paradigm that
facilitates defining, handling and coordinating
objects.

Preliminaries
•  We will use the following funcitons:"
let pi1 (x,y) = x !
let pi2 (x,y) = y !
let report (x,y) = print_string "Point: "; !
 print_int x; !
 print_string ",";!
 print_int y; !
 print_newline () !
let movept (x,y) (dx,dy) = (x+dx,y+dy) !

Point with State"
let mktPoint init =!
 let myloc = ref init in !
 (myloc, !
 (fun () -> pi1 !myloc), !
 (fun () -> pi2 !myloc), !
 (fun () -> report !myloc), !
 (fun dl -> myloc := movept !myloc

dl)) !

Point with State"
•  mktPoint creates a point with local state"
•  Defines a tuple of functions that share a

common state. "
•  Use is awkward"
"
let (lref,getx,gety,show,move) ="
 mktPoint (2,4);;"

Working with the Point object"
let (lref,getx,gety,show,move) = mktPoint (2,4);;"
"
getx ();;"
"
move (3,4);;"
"
show ();;"
 "

- : int = 2

- : unit = ()

Point: 5,8
- : unit = ()

Improvement - Use Records

type point =
{ loc : (int * int) ref;
 getx : unit -> int;
 gety : unit -> int;
 draw : unit -> unit;
 move : int * int -> unit;
}

Improvement - Use Records
let mkrPoint newloc =
 let myloc = ref newloc in
 { loc = myloc;
 getx = (fun () -> pi1 !myloc);
 gety = (fun () -> pi2 !myloc);
 draw = (fun () -> report !myloc);
 move =
 (fun dl -> myloc := movept !myloc dl)
 }

Working with the Point object"
How do you instantiate the object ?"
let point = mkrPoint (2,4);;"
"
How do you invoke the function getx? "
"
"
How do you invoke the function move?"
"
"
 "
"

point.getx();;
- : int = 2

point.move(2,3);;
- : unit = ()

Adding self
let mkPoint newloc =
 let rec this =
 { loc = ref newloc;
 getx = (fun() -> pi1 ! (this.loc));
 gety = (fun() -> pi2 ! (this.loc));
 draw = (fun() -> report ! (this.loc));
 move = (fun dl ->
 this.loc := movept ! (this.loc) dl) }
in this;;

Memory

•  The record point references to the fields
•  If you copy a point, the data does not

get copied!

let p1 = mkPoint (4,7);;
val p1 : point = {loc={contents=4, 7}; ...}
let p2 = mkPoint(6,2);;
val p2 : point = {loc={contents=6, 2}; ...}

Memory

let p3 = p1;;

p1.move(5,5);;

p3;;

val p3 : point = {loc={contents=4, 7}; ...}

- : point = {loc={contents=9, 12}; ...}

- : unit = ()

So far…
•  We used a record to implement a type

for points.
– Advantages:

•  Every method had its own name and type.
•  Simple syntax for manipulating the object.
•  It’s fast: we know at compile time which

method has been called.
– Disadvantages

•  Inheritance is very difficult with this model.
– Adding a new message type means

updating everything.

Message Dispatching

•  Object is kind of data that can receive
messages from program or other
objects.
– Need implementation where type doesn’t

change when new methods are added.
•  Let a point object be a function that

takes a string and returns an
appropriate matching for that string.

mkPoint
let mkPoint x y =
 let x = ref x in let y = ref y in
 fun st -> match st with
 | “getx” -> (fun _ -> !x)
 | “gety” -> (fun _ -> !y)
 | “movx” -> (fun nx -> x := !x + nx; !x)
 | “movy” -> (fun ny -> y := !y + ny; !y)
 | _ -> raise(Failure (“Unknown message.”))

•  All methods now have to have type int -> int

Using mkPoint"
How do you instantiate the object ?"
let point = mkPoint (2,4);;"
"
How do you invoke the function getx? "
"
"
How do you invoke the function move?"
"
"
 "
"

point "getx" 0;;
- : int = 2

point "movx" 2;;
- : int = 4

Adding a new method
•  Exercise: How would we add a report method?

let mkPoint x y = …
 fun st -> match st with
 ……….
 | "report" -> (fun _ -> print_string "X = ";
 print_int !x;
 print_string "\n";
 print_string "Y = ";
 print_int !y;
 print_string "\n";0)
 | _ -> raise (Failure("Function not understood"));;

Adding this
•  Exercise: How would we add this?

let mkPoint x y = let this = …
 (fun st -> match st with
 ……….
 | _ -> raise (Failure("Function not understood")))
 in this;;

Example: fastpoint subclass

Three entities involved: the superclass
(superpoint) and the subclasses (point)
and (fastpoint). fastpoint moves twice
as fast as the original point

What does it mean for fastpoint to be a

subclass of superpoint?
•  fastpoint should respond to the same messages.

–  It may override some of them.
–  It may add its own.
–  It may not remove any methods.

Implementing

•  Point construction needs to return the
“public” data to fastpoint and
point.

• fastpoint returns a dispatcher:
–  If fastpoint dispatcher can handler a

message, it does.
– Otherwise, it sends the message to point.

Code: superpoint
let mkSuperPoint x y =
 let x = ref x in let y = ref y in
 ((x,y),
 fun st -> match st with
 "getx" -> (fun _ -> !x)
 | "gety" -> (fun _ -> !y)
 | "movx" -> (fun nx -> x := !x + nx; !x)
 | "movy" -> (fun ny -> y := !y + ny; !y)
 | “report” -> (fun _ -> report (!x, !y);0)
 | _ -> raise (Failure ("Function not

understood")));;

Our
instance
variables
are now
public.

Code: point

let mkPoint x y =
 mkSuperPoint x y;;

Code: fastpoint

let mkFastPoint x y =
 let ((x,y),super) = (mkSuperPoint x y) in
 ((x,y),
 fun st -> match st with
 "movx" -> (fun nx -> x := !x + 2 * nx; !x)
 | "movy" -> (fun ny -> y := !y + 2 * ny; !y)
 | _ -> super st);;

Code: fastpoint

•  This technique is flexible
–  We can add methods very easily.

•  But it’s also slow
– Imagine if we had a chain of 20

classes…

Till now…

• Have implemented objects
using message dispatch model.

• More Limitations :-
– Had to make a member public in

order to be accessed in sub-
class.

– No notion of “protected”
member.

Polymorphism

•  Polymorphism: same function name
used at different types

•  Adhoc Polymorphism
– Different operations on different types

using the same name.
– e.g.:- sum (int x, int y), sum (float x,

float y)
– Different function for each instance

Structural Polymorphism

•  One algorithm, one compiled code unit
used at different types it, based on
outermost structure of argument

•  Type of polymorphism in OCaml

Inheritance polymorphism
let p1,p2, p3, p4 =((mkPoint 2 3), (mkPoint 3 2),
 (mkFastPoint 5 3), (mkFastPoint 3 9));;

List.map (fun pt -> pt “report” 0)
 [p1, p2, p3, p4];;
Point: 2,3
Point: 3,2
Point: 5,3
Point: 3,9

The function passed to
map will use both point
and fastpoint types

point

fastpoint

Discussion: Dynamic Dispatch
•  Java uses “every object is of type Object”

technique.
•  Strong type system makes it cumbersome to

simulate objects -- have to either
–  define a new type to encompass all objects, or
–  force all methods to have same type

•  Can’t handle dynamic dispatch (aka dynamic
binding).
–  Need to have each method take the object as an

argument

Discussion: Class variables

•  Have only discussed instance
variables

•  Class variables are variables
shared by all instances of class.

•  Only one copy of class variables:-
– Can implement class variables in

OCAML, using global variables.

Conclusions
•  Objects have a lot of flexibility, and allow us

to create useful abstractions.
•  They can be implemented using functions.
•  These are useful enough in practice, and

difficult enough to implement that most
modern languages now include them,
including OCAML. (‘O’-CAML)

•  An alternative to to Objects is a flexible
module system
– Main ingredient missing: dynamic binding

