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How to encode Objects with 
Functions? 

•  Functional Languages have fairly 
straightforward semantics 

•  Object Oriented Languages are more 
common 

•  Problem: How to encode in functional 
language? 
– To understand their semantics 
– To be able to simulate objects in a 

language without them 



What is an Object? 
•  Data (state) and functions (interface) are 

grouped together. 
•  Functions have their own local state 
•  Objects can send and receive messages 
•  Objects can refer to themselves 

 
•  Object Oriented Programming is a 

programming language paradigm that 
facilitates defining, handling and coordinating 
objects. 



Preliminaries 
•  We will use the following funcitons:"
let pi1 (x,y) = x  !
let pi2 (x,y) = y !
let report (x,y) = print_string "Point: "; !
                          print_int x; !
                          print_string ",";!
                          print_int y; !
                          print_newline () !
let movept (x,y) (dx,dy) = (x+dx,y+dy) !



Point with State"
let mktPoint init =!
 let myloc = ref init in !
  ( myloc, !
    (fun () -> pi1 !myloc), !
    (fun () -> pi2 !myloc), !
    (fun () -> report !myloc), !
    (fun dl -> myloc := movept !myloc 

dl) ) !



Point with State"
•  mktPoint creates a point with local state"
•  Defines a tuple of functions that share a 

common state. "
•  Use is awkward"
"
let (lref,getx,gety,show,move) ="
     mktPoint (2,4);;"



Working with the Point object"
let (lref,getx,gety,show,move) = mktPoint (2,4);;"
"
# getx ();;"
"
# move (3,4);;"
"
# show ();;"
 "

- : int = 2 

- : unit = () 

Point: 5,8 
- : unit = () 



Improvement - Use Records 

type point = 
{ loc : (int * int) ref;  
  getx : unit -> int; 
  gety : unit -> int;  
  draw : unit -> unit; 
  move : int * int -> unit; 
} 



Improvement - Use Records 
let mkrPoint newloc = 
  let myloc = ref newloc in 
  { loc = myloc; 
    getx = (fun () -> pi1 !myloc); 
    gety = (fun () -> pi2 !myloc); 
    draw = (fun () -> report !myloc); 
    move =  
    (fun dl -> myloc := movept !myloc dl) 
   } 



Working with the Point object"
How do you instantiate the object ?"
let point = mkrPoint (2,4);;"
"
How do you invoke the function getx? "
"
"
How do you invoke the function move?"
"
"
 "
"

# point.getx();; 
- : int = 2 

# point.move(2,3);; 
- : unit = () 



Adding self 
let mkPoint newloc = 
  let rec this = 
  { loc = ref newloc; 
    getx = (fun() -> pi1 ! (this.loc)); 
    gety = (fun() -> pi2 ! (this.loc)); 
    draw = (fun() -> report ! (this.loc)); 
    move = (fun dl -> 
              this.loc := movept ! (this.loc) dl) } 
in this;; 



Memory 

•  The record point references to the fields 
•  If you copy a point, the data does not 

get copied! 

# let p1 = mkPoint (4,7);; 
val p1 : point = {loc={contents=4, 7}; ...} 
# let p2 = mkPoint(6,2);; 
val p2 : point = {loc={contents=6, 2}; ...} 



Memory 

# let p3 = p1;; 
 
# p1.move(5,5);; 
 
# p3;; 

val p3 : point = {loc={contents=4, 7}; ...} 

- : point = {loc={contents=9, 12}; ...} 

- : unit = () 



So far… 
•   We used a record to implement a type 

for points. 
– Advantages: 

•  Every method had its own name and type. 
•  Simple syntax for manipulating the object. 
•  It’s fast: we know at compile time which 

method has been called. 
– Disadvantages 

•  Inheritance is very difficult with this model. 
– Adding a new message type means 

updating everything. 



Message Dispatching 

•  Object is kind of data that can receive 
messages from program or other 
objects. 
– Need implementation where type doesn’t 

change when new methods are added. 
•  Let a point object be a function that 

takes a string and returns an 
appropriate matching for that string. 



mkPoint 
let mkPoint x y = 
  let x = ref x in   let y = ref y in 
  fun st ->   match st with 
    | “getx” -> (fun _ -> !x) 
    | “gety” -> (fun _ -> !y) 
    | “movx”  -> (fun nx -> x := !x + nx; !x) 
    | “movy” -> (fun ny -> y := !y + ny; !y) 
    | _      -> raise(Failure (“Unknown message.”)) 

•  All methods now have to have type int -> int 



Using mkPoint"
How do you instantiate the object ?"
let point = mkPoint (2,4);;"
"
How do you invoke the function getx? "
"
"
How do you invoke the function move?"
"
"
 "
"

# point "getx" 0;; 
- : int = 2 

# point "movx" 2;; 
- : int = 4 



Adding a new method 
•  Exercise: How would we add a report method? 

 

# let mkPoint x y = … 
   fun st -> match st with    
    ………. 
    | "report"  -> (fun _ -> print_string "X = ";  
                             print_int !x;  
                             print_string "\n"; 
                             print_string "Y = ";  
                             print_int !y;  
                             print_string "\n";0) 
    | _ -> raise (Failure("Function not understood"));; 



Adding this  
•  Exercise: How would we add this? 

# let mkPoint x y = let this = … 
   (fun st -> match st with    
    ………. 
   | _ -> raise (Failure("Function not understood"))) 
  in this;; 



Example: fastpoint subclass 

Three entities involved: the superclass 
(superpoint) and the subclasses (point) 
and (fastpoint). fastpoint moves twice 
as fast as the original point 

 
What does it mean for fastpoint to be a 

subclass of superpoint? 
•  fastpoint should respond to the same messages. 

–  It may override some of them. 
–  It may add its own. 
–  It may not remove any methods. 



Implementing 

•  Point construction needs to return the 
“public” data to fastpoint and 
point. 

• fastpoint returns a dispatcher: 
–  If fastpoint dispatcher can handler a 

message, it does. 
– Otherwise, it sends the message to point. 



Code: superpoint 
let mkSuperPoint x y =  
     let x = ref x in let y = ref y in 
      ((x,y), 
      fun st -> match st with 
                "getx" -> (fun _ -> !x) 
              | "gety" -> (fun _ -> !y)   
              | "movx" -> (fun nx -> x := !x + nx; !x)  
              | "movy" -> (fun ny -> y := !y + ny; !y) 
              | “report” -> (fun _ -> report (!x, !y);0) 
              | _ -> raise (Failure ("Function not 

understood")));;  

Our 
instance 
variables 
are now 
public.  



Code: point 

 
let mkPoint x y = 
    mkSuperPoint x y;; 



Code: fastpoint 
 
let mkFastPoint x y = 
   let ((x,y),super) = (mkSuperPoint x y) in 
      ((x,y), 
       fun st -> match st with 
                 "movx" -> (fun nx -> x := !x + 2 * nx; !x)   
               | "movy" -> (fun ny -> y := !y + 2 * ny; !y) 
               | _ -> super st);; 



Code: fastpoint 

•  This technique is flexible 
–  We can add methods very easily. 

•  But it’s also slow 
– Imagine if we had a chain of 20 

classes… 



Till now… 

• Have implemented objects 
using message dispatch model. 

• More Limitations :- 
– Had to make a member public in 

order to be accessed in sub-
class. 

– No notion of “protected” 
member. 



Polymorphism 

•  Polymorphism: same function name 
used at  different types 

•  Adhoc Polymorphism 
– Different operations on different types 

using the same name. 
– e.g.:- sum (int x, int y), sum (float x, 

float y) 
– Different function for each instance 



Structural Polymorphism 

•  One algorithm, one compiled code unit 
used at different types it, based on 
outermost structure of argument 

•  Type of polymorphism in OCaml 



Inheritance polymorphism 
# let p1,p2, p3, p4 =((mkPoint 2 3), (mkPoint 3 2), 
                 (mkFastPoint 5 3), (mkFastPoint 3 9));; 
 
# List.map (fun pt -> pt “report” 0) 
                   [p1, p2, p3, p4];; 
Point: 2,3 
Point: 3,2 
Point: 5,3 
Point: 3,9 
 

The function passed to 
map will use both point 
and fastpoint types 

point 

fastpoint 



Discussion: Dynamic Dispatch 
•  Java uses “every object is of type Object” 

technique. 
•  Strong type system makes it cumbersome to 

simulate objects -- have to either 
–  define a new type to encompass all objects, or 
–  force all methods to have same type 

•  Can’t handle dynamic dispatch (aka dynamic 
binding). 
–  Need to have each method take the object as an 

argument 



Discussion: Class variables 

•  Have only discussed instance 
variables 

•  Class variables are variables 
shared by all instances of class. 

•  Only one copy of class variables:- 
– Can implement class variables in 

OCAML, using global variables. 



Conclusions 
•  Objects have a lot of flexibility, and allow us 

to create useful abstractions. 
•  They can be implemented using functions. 
•  These are useful enough in practice, and 

difficult enough to implement that most 
modern languages now include them, 
including OCAML. ( ‘O’-CAML) 

•  An alternative to to Objects is a flexible 
module system 
– Main ingredient missing: dynamic binding 


