
6/24/12 1

Programming Languages and
Compilers (CS 421)

Dennis Griffith
0207 SC, UIUC
http://www.cs.illinois.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha, and Elsa Gunter

6/24/12 2

Grammars

n  Grammars are formal descriptions of which
strings over a given character set are in a
particular language

n  Language designers write grammar
n  Language implementers use grammar to

know what programs to accept
n  Language users use grammar to know how

to write legitimate programs

6/25/12 3

Types of Formal Language Descriptions

n  Regular expressions, regular grammars
n  Finite state automata
n  Context-free grammars, BNF grammars,

syntax diagrams

n  Whole family more of grammars and
automata – covered in automata theory

6/24/12 4

Sample Grammar

n  Language: Parenthesized sums of 0’s and
1’s

n  <Sum> ::= 0
n  <Sum >::= 1
n  <Sum> ::= <Sum> + <Sum>
n  <Sum> ::= (<Sum>)

6/24/12 5

BNF Grammars

n  Start with a set of characters, a,b,c,…
n  We call these terminals

n  Add a set of different characters, X,Y,Z,
…
n  We call these nonterminals

n  One special nonterminal S called start
symbol

6/24/12 6

BNF Grammars

n  BNF rules (aka productions) have form
 X ::= y
 where X is any nonterminal and y is a string

of terminals and nonterminals
n  BNF grammar is a set of BNF rules such that

every nonterminal appears on the left of
some rule

6/24/12 7

Sample Grammar

n  Terminals: 0 1 + ()
n  Nonterminals: <Sum>
n  Start symbol = <Sum>

n  <Sum> ::= 0
n  <Sum >::= 1
n  <Sum> ::= <Sum> + <Sum>
n  <Sum> ::= (<Sum>)
n  Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)

6/24/12 8

BNF Deriviations

n  Given rules
X::= yZw and Z::=v

we may replace Z by v to say
X => yZw => yvw

n  Sequence of such replacements called
derivation

n  Derivation called right-most if always
replace the right-most non-terminal

6/24/12 9

BNF Derivations

n  Start with the start symbol:

<Sum> =>

6/24/12 10

BNF Derivations

n  Pick a non-terminal

<Sum> =>

6/24/12 11

n  Pick a rule and substitute:
n  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

6/24/12 12

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

6/24/12 13

n  Pick a rule and substitute:
n  <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

6/24/12 14

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

6/24/12 15

n  Pick a rule and substitute:
n  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

6/24/12 16

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

6/24/12 17

n  Pick a rule and substitute:
n  <Sum >::= 1

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

6/24/12 18

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

6/24/12 19

n  Pick a rule and substitute:
n  <Sum >::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

6/24/12 20

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

6/24/12 21

n  Pick a rule and substitute
n  <Sum> ::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) 0
 => (0 + 1) + 0

BNF Derivations

6/24/12 22

n  (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0
 => (0 + 1) + 0

BNF Derivations

6/24/12 23

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

6/24/12 24

BNF Semantics

n  The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

6/24/12 25

Extended BNF Grammars

n  Alternatives: allow rules of from X::=y|z
n  Abbreviates X::= y, X::= z

n  Options: X::=y[v]z
n  Abbreviates X::=yvz, X::=yz

n  Repetition: X::=y{v}*z
n  Can be eliminated by adding new

nonterminal V and rules X::=yz, X::=yVz,
V::=v, V::=vV

6/24/12 26

Regular Grammars

n  Subclass of BNF
n  Only rules of form

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

n  Defines same class of languages as regular
expressions

n  Can be used for writing lexers (programs that
convert strings of characters into strings of
tokens)

6/24/12 27

Example

n  Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

n  Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

6/24/12 28

n  Graphical representation of derivation
n  Each node labeled with either non-terminal

or terminal
n  If node is labeled with a terminal, then it is a

leaf (no sub-trees)
n  If node is labeled with a non-terminal, then

it has one branch for each character in the
right-hand side of rule used to substitute for
it

Parse Trees

6/24/12 29

Example

n  Consider grammar:
 <exp> ::= <factor>
 | <factor> + <factor>
 <factor> ::= <bin>
 | <bin> * <exp>
 <bin> ::= 0 | 1

n  Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

6/24/12 30

Example cont.

n  1 * 1 + 0: <exp>

<exp> is the start symbol for this parse

tree

6/24/12 31

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

Use rule: <exp> ::= <factor>

6/24/12 32

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

6/24/12 33

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

Use rules: <bin> ::= 1 and
 <exp> ::= <factor> +

<factor>

6/24/12 34

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

Use rule: <factor> ::= <bin>

6/24/12 35

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Use rules: <bin> ::= 1 | 0

6/24/12 36

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Fringe of tree is string generated by grammar

6/24/12 37

Your Turn: 1 * 0 + 0 * 1

6/24/12 38

Parse Tree Data Structures

n  Parse trees may be represented by OCaml
datatypes

n  One datatype for each nonterminal
n  One constructor for each rule
n  Defined as mutually recursive collection of

datatype declarations

6/24/12 39

Example

n  Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

n  type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One

6/24/12 40

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

6/24/12 41

Example cont.

n  Can be represented as

Factor2Exp
(Mult(One,
 Plus(Bin2Factor One,
 Bin2Factor Zero)))

6/24/12 42

Ambiguous Grammars and Languages

n  A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

n  If all BNF’s for a language are ambiguous
then the language is inherently ambiguous

6/24/12 43

Example: Ambiguous Grammar

n  0 + 1 + 0
 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

6/24/12 44

Example

n  What is the result for:
3 + 4 * 5 + 6

6/24/12 45

Example

n  What is the result for:
3 + 4 * 5 + 6

n  Possible answers:
n  41 = ((3 + 4) * 5) + 6
n  47 = 3 + (4 * (5 + 6))
n  29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
n  77 = (3 + 4) * (5 + 6)

6/24/12 46

Example

n  What is the value of:
7 – 5 – 2

6/24/12 47

Example

n  What is the value of:
7 – 5 – 2

n  Possible answers:
n  In Pascal, C++, SML assoc. left
 7 – 5 – 2 = (7 – 5) – 2 = 0
n  In APL, associate to right
 7 – 5 – 2 = 7 – (5 – 2) = 4

6/24/12 48

Two Major Sources of Ambiguity

n  Lack of determination of operator
precedence

n  Lack of determination of operator
assoicativity

n  Not the only sources of ambiguity

6/24/12 49

How to Enforce Associativity

n  Have at most one recursive call per
production

n  When two or more recursive calls would
be natural leave right-most one for
right assoicativity, left-most one for left
assoiciativity

6/24/12 50

Example

n  <Sum> ::= 0 | 1 | <Sum> + <Sum>
 | (<Sum>)
n  Becomes

n  <Sum> ::= <Num> | <Num> + <Sum>
n  <Num> ::= 0 | 1 | (<Sum>)

6/24/12 51

Operator Precedence

n  Operators of highest precedence
evaluated first (bind more tightly).

n  Precedence for infix binary operators
given in following table

n  Needs to be reflected in grammar

6/24/12 52

Precedence Table - Sample

Fortan Pascal C/C++

Ada SML

highest ** *, /,
div,
mod

++, -- ** div,
mod, /

, *
*, / +, - *, /,

%
*, /,
mod

+, -,
^

+, - +, - +, - ::

6/24/12 53

First Example Again

n  In any above language, 3 + 4 * 5 + 6
= 29

n  In APL, all infix operators have same
precedence
n  Thus we still don’t know what the value is

(handled by associativity)
n  How do we handle precedence in

grammar?

6/24/12 54

Predence in Grammar

n  Higher precedence translates to longer
derivation chain

n  Example:
<exp> ::= <id> | <exp> + <exp>
 | <exp> * <exp>
n  Becomes

<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

