Programming Languages and Compilers (CS 421)

Dennis Griffith
 0207 SC, UIUC http://www.cs.illinois.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa Gunter

Meta-discourse

- Language Syntax and Semantics
- Syntax
- DFSAs and NDFSAs
- Grammars
- Semantics
- Natural Semantics
- Transition Semantics

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the starting point

Syntax of English Language

- Pattern 1 | Subject | Verb |
| :--- | :--- |
| | David |
| The dog | sings |
| barked | |
| Susan | yawned |
- Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

Elements of Syntax

- Character set - previously always ASCII, now often 64bit character sets
- Keywords - usually reserved
- Special constants - cannot be assigned to
- Identifiers - can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

- Expressions
if ... then begin ... ; ... end else begin ... ; ... end
- Type expressions
typexpr $_{1}->$ typexpr $_{2}$
- Declarations (in functional languages)
let pattern ${ }_{1}=$ expr $_{1}$ in expr
- Statements (in imperative languages)

$$
a=b+c
$$

- Subprograms

$$
\text { let pattern }=\text { let rec inner }=\ldots \text { in expr }
$$

Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata - covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Regular Expressions

- Start with a given character set a, b, c...
- Each character is a regular expression
- It represents the set of one string containing just that character

Regular Expressions

- If \mathbf{x} and \mathbf{y} are regular expressions, then $\mathbf{x y}$ is a regular expression
- It represents the set of all strings made from first a string described by \mathbf{x} then a string described by y
If $x=\{a, a b\}$ and $y=\{c, d\}$ then $x y=\{a c, a d, a b c, a b d\}$.
- If \mathbf{x} and \mathbf{y} are regular expressions, then $\mathbf{x v y}$ is a regular expression
- It represents the set of strings described by either x or y
If $x=\{a, a b\}$ and $y=\{c, d\}$ then $x \vee y=\{a, a b, c, d\}$

Regular Expressions

- If \mathbf{x} is a regular expression, then so is (\mathbf{x})
- It represents the same thing as \mathbf{x}
- If \mathbf{x} is a regular expression, then so is \mathbf{x}^{*}
- It represents strings made from concatenating zero or more strings from x
If $x=\{a, a b\}$
then $x^{*}=\{$ " ",a,ab,aa,aab,abab,aaa,aaab,...\}
■ ε
- It represents \{""\}, set containing the empty string

Example Regular Expressions

- ($0 \vee 1$)*1
- The set of all strings of $\mathbf{0}$ ' s and $\mathbf{1}$ ' s ending in 1 , $\{1,01,11, \ldots\}$
- a*b(a*)
- The set of all strings of a's and b's with exactly one b
- ((01) v(10))*
- You tell me
- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words

Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
- Identifier $=(a \vee b \vee \ldots \vee Z \vee A \vee B \vee \ldots \vee Z)(a$ $\vee b \vee \ldots \vee Z \vee A \vee B \vee \ldots \vee Z \vee 0 \vee 1 \vee \ldots \vee 9) *$
- Digit $=(0 \vee 1 \vee \ldots \vee 9)$
- Number $=0 \vee(1 \vee \ldots \vee 9)(0 \vee \ldots \vee 9) * \vee$ $\sim(1 \vee \ldots \vee 9)(0 \vee \ldots \vee 9) *$
- Keywords: if $=$ if, while $=$ while,...

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
- which option to choose,
- how many repetitions to make
- Answer: finite state automata

Finite State Automata

- A finite state automata over an alphabet is:
- a directed graph
- a finite set of states defined by the nodes
- edges are labeled with elements of alphabet, or empty string; they define state transitions
- some nodes (or states), marked as final
- one node marked as start state

Example FSA

Deterministic FSA's

- If FSA has for every state exactly one edge for each letter in alphabet then FSA is deterministic
- No edge labeled with ε
- In general FSA in non-deterministic.
- NFSA also allows edges labeled by ε
- Deterministic FSA special kind of nondeterministic FSA

DFSA Language Recognition

- Think of a DFSA as a board game; DFSA is board
- You have string as a deck of cards; one letter on each card
- Start by placing a disc on the start state

DFSA Language Recognition

- Move the disc from one state to next along the edge labeled the same as top card in deck; discard top card
- When you run out of cards,
- if you are in final state, you win; string is in language
- if you are not in a final state, you lose; string is not in language

DFSA Language Recognition -Summary

- Given a string over alphabet
- Start at start state
- Move over edge labeled with first letter to new state
- Remove first letter from string
- Repeat until string gone
- If end in final state then string in language

Example DFSA

- Regular expression: (0 v 1)* 1
- Deterministic FSA

Example DFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string 01101

Example DFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string 01101

Example DFSA

- Regular expression: (0 v 1)* 1
- Accepts string ס1101

Example DFSA

- Regular expression: (0 v 1)* 1
- Accepts string D/101

Example DFSA

- Regular expression: (0 v 1)* 1
- Accepts string DKた 01

Example DFSA

- Regular expression: (0 v 1)* 1
- Accepts string DK\& 1

Example DFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string DK10太

Non-deterministic FSA's

- NFSA generalize DFSA in two ways:
- Include edges labeled by ε
- Allows process to non-deterministically change state

Non-deterministic FSA's

- Each state can have zero, one or more edges labeled by each letter
- Given a letter, non-deterministically choose an edge to use

NFSA Language Recognition

- Play the same game as with DFSA
- Free move: move across an edge with empty string label without discarding card
- When you run out of letters, if you are in final state, you win; string is in language
- You can take one or more moves back and try again
- If have tried all possible paths without success, then you lose; string not in language

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Non-deterministic FSA

Example NFSA

- Regular expression: (0 v 1)* 1
- Accepts string 01101

Example NFSA

- Regular expression: (0 v 1)* 1
- Accepts string 01101

Example NFSA

- Regular expression: (0 v 1)* 1
- Accepts string ס1101

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string D/ 101
- Guess

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string 01,101
- Backtrack

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string ס/101
- Guess again

Example NFSA

- Regular expression: (0 v 1)* 1
- Accepts string סKた 01
- Guess

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string D/101
- Backtrack

Example NFSA

- Regular expression: (0 v 1)* 1
- Accepts string DKA 01
- Guess again

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string DK\& 1

Example NFSA

- Regular expression: (0 v 1$)^{*} 1$
- Accepts string DK10K
- Guess (Hurray!!)

Rule Based Execution

- Search
- When stuck backtrack to last point with choices remaining
- Executing the NFSA in last example was example of rule based execution
- FSA's are rule-based programs; transitions between states (labeled edges) are rules; set of all FSA's is programming language

Rule Based Execution

- Search
- When stuck backtrack to last point with choices remaining
- FSA's are rule-based programs; transitions between states (labeled edges) are rules; set of all FSA's is programming language

Where We Are Going

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees
(parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
- Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
- Parsing: Convert a list of tokens into an abstract syntax tree

Lexing

- Different syntactic categories of "words": tokens
Example:
- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd 123 jkl 3.14" will become: [String "asd"; Int 123; String "jkl"; Float 3.14]

Lexing

- Each category described by regular expression (with extended syntax)
- Words recognized by (encoding of) corresponding finite state automaton
- Problem: we want to pull words out of a string; not just recognize a single word

Lexing

- Modify behavior of DFA
- When we encounter a character in a state for which there is no transition
- Stop processing the string
- If in an accepting state, return the token that corresponds to the state, and the remainder of the string
- If not, fail
- Add recursive layer to get sequence

Example

- S_{1} return a string
- S_{2} return an integer
- S_{3} return a float

Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
- A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml

How to do it

- To use regular expressions to parse our input we need:
- Some way to identify the input string - call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.

How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.

Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file <filename>.mll
- Call

ocamllex <filename>.mll

- Produces Ocaml code for a lexical analyzer in file <filename>.ml

Sample Input

rule main = parse
['0'-'9']+ \{ print_string "Int\n"\}
| ['0'-'9']+'.'['0'-'9']+ \{ print_string "Float\n"\}
| ['a'-'z']+ \{ print_string "String\n"\}
| _ \{ main lexbuf \}
\{
let newlexbuf = (Lexing.from_channel stdin) in print_string "Ready to lex.\n"; main newlexbuf
\}

General Input

\{ header \}
let ident = regexp ...
rule entrypoint [arg1... argn] = parse regexp \{ action \}
| ...
| regexp \{ action \}
and entrypoint [arg1... argn] = parse ...and ...
\{ trailer \}

Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml
- let ident = regexp ... Introduces ident for use in later regular expressions

Ocamllex Input

- <filename>.ml contains one lexing
function per entrypoint
- Name of function is name given for entrypoint
- Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type Lexing.lexbuf
- arg1... argn are for use in action

Ocamllex Regular Expression

- Single quoted characters for letters: 'a'
- _: (underscore) matches any letter
- Eof: special "end_of_file" marker
- Concatenation same as usual
. "string": concatenation of sequence of characters
- e_{1} / e_{2} : choice - what was $e_{1} \vee e_{2}$

Ocamllex Regular Expression

- [$c_{1}-c_{2}$]: choice of any character between first and second inclusive, as determined by character codes
- [$\left.{ }^{\wedge} C_{1}-C_{2}\right]$: choice of any character NOT in set
- e^{*} : same as before
- e+: same as e e^{*}
- e?: option - was $e_{1} \vee \varepsilon$

Ocamllex Regular Expression

- $e_{1} \# e_{2}$: the characters in e_{1} but not in $e_{2} ; e_{1}$ and e_{2} must describe just sets of characters
- ident: abbreviation for earlier reg exp in let ident = regexp
- e_{1} as id: binds the result of e_{1} to $i d$ to be used in the associated action

Ocamllex Manual

- More details can be found at
http://caml.inria.fr/pub/docs/manual-ocaml/ manual026.html

Example : test.mll

\{ type result = Int of int | Float of float | String of string \}
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters $=$ letter +

Example : test.mll

rule main = parse
(digits)'.'digits as f \{ Float (float_of_string f) \}
digits as $\mathrm{n} \quad\{$ Int (int_of_string n) \}
| letters as s \{ String s\}
| _ \{ main lexbuf \}
\{ let newlexbuf = (Lexing.from_channel stdin) in print_string "Ready to lex.";
print_newline ();
main newlexbuf \}

Example

\# \#use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result $=$ <fun>
Ready to lex.
hi there 2345.2

- : result = String "hi"

What happened to the rest?!?

Example

\# let b = Lexing.from_channel stdin;;
\# main b;;
hi 673 there

- : result = String "hi"
\# main b;;
- : result = Int 673
\# main b;;
- : result = String "there"

Problem

- How to get lexer to look at more than the first token at one time?
- Answer: action has to tell it to -- recursive calls
- Side Benefit: can add "state" into lexing
- Note: already used this with the _ case

Example

rule main = parse
(digits) '.' digits as f \{ Float (float_of_string f) :: main lexbuf\}
| digits as $\mathrm{n} \quad\{$ Int (int_of_string n) :: main lexbuf $\}$
| letters as s lexbuf\}
| eof
| _
\{ String s :: main
\{ [] \}
\{ main lexbuf \}

Example Results

Ready to lex.
hi there 2345.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]
\#

Used Ctrl-d to send the end-of-file signal

Dealing with comments

First Attempt
let open_comment = "(*" let close_comment = "*)" rule main = parse
(digits) '.' digits as f \{ Float (float_of_string f) :: main lexbuf\}
digits as n main lexbuf \}
| letters as s \{ String s:: main lexbuf\}

Dealing with comments

| open_comment \{ comment lexbuf\}
| eof \{[]\}
| _ \{ main lexbuf \}
and comment = parse
close_comment \{ main lexbuf \}
| _
\{ comment lexbuf \}

Dealing with nested comments

rule main = parse...
| open_comment \{ comment 1 lexbuf\}
| eof \{ [] \}
| _ \{ main lexbuf \}
and comment depth $=$ parse
open_comment $\quad\{$ comment (depth+1) lexbuf $\}$
close_comment $\quad\{$ if depth $=1$
then main lexbuf
else comment (depth - 1) lexbuf \}
\{ comment depth lexbuf \}

Dealing with nested comments

rule main = parse
(digits) '.' digits as f \{ Float (float_of_string f) :: main lexbuf\}
| digits as $\mathrm{n} \quad\{$ Int (int_of_string n) :: main lexbuf \}
| letters as s \{ String s :: main lexbuf\}
| open_comment $\{$ (comment 1 lexbuf $\}$
| eof $\{[]\}$
| _ \{ main lexbuf \}

Dealing with nested comments

and comment depth = parse open_comment
\{ comment (depth+1) lexbuf \}
close_comment $\quad\{$ if depth $=1$
then main lexbuf
else comment (depth - 1) lexbuf \}
I _
\{ comment depth lexbuf \}

