
6/6/12 1

Programming Languages and
Compilers (CS 421)

Dennis Griffith
0207 SC, UIUC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha and Dennis Griffith

6/6/12 2

Variants - Syntax (slightly simplified)

n  type name = C1 [of ty1] | . . . | Cn [of tyn]
n  Introduce a type called name
n  C1 : ty1 -> name
n  Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
n  Constructors are the basis of almost all

pattern matching

6/6/12 3

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they are ordered by their

declaration order

6/6/12 4

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
type weekday =
 Monday
 | Tuesday
 | Wednesday
 | Thursday
 | Friday
 | Saturday
 | Sunday

6/6/12 5

Functions over Enumerations

let day_after day = match day with
 Monday -> Tuesday
 | Tuesday -> Wednesday
 | Wednesday -> Thursday
 | Thursday -> Friday
 | Friday -> Saturday
 | Saturday -> Sunday
 | Sunday -> Monday;;
 val day_after : weekday -> weekday = <fun>

6/6/12 6

Functions over Enumerations

let rec days_later n day =
 match n with 0 -> day
 | _ -> if n > 0
 then day_after (days_later (n - 1) day)
 else days_later (n + 7) day;;
val days_later : int -> weekday -> weekday

= <fun>

6/6/12 7

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

6/6/12 8

Disjoint Union Types

n  Disjoint union of types, with some possibly
occurring more than once

n  We can also add in some new singleton
elements

ty1 ty2 ty1

6/6/12 9

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>

6/6/12 10

Polymorphism in Variants

n  The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n  Used to encode partial functions
n  Often can replace the raising of an exception

6/6/12 11

Functions over option

let rec first p list =
 match list with [] -> None
 | (x::xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

6/6/12 12

Mapping over Variants

let optionMap f opt =
 match opt with None -> None
 | Some x -> Some (f x);;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>
optionMap
 (fun x -> x - 2)
 (first (fun x -> x > 3) [1;3;4;2;5]);;
- : int option = Some 2

6/6/12 13

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option ->

'b = <fun>
let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>

6/6/12 14

Recursive Types

n  The type being defined may be a component
of itself

ty ty’ ty

6/6/12 15

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree *

int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of

(int_Bin_Tree * int_Bin_Tree)

6/6/12 16

Recursive Data Type Values

let bin_tree =
 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node

(Leaf 3, Leaf 6), Leaf (-7))

6/6/12 17

Recursive Data Type Values

 bin_tree = Node

 Node Leaf (-7)

Leaf 3 Leaf 6

Lists are Varients

n  type ‘a mylist = Nil | Cons of (‘a * ‘a mylist)
n  Real lists use nicer syntax

6/6/12 18

6/6/12 19

Recursive Functions

let rec first_leaf_value tree =
 match tree with (Leaf n) -> n
 | Node (left_tree, right_tree) ->
 first_leaf_value left_tree;;
val first_leaf_value : int_Bin_Tree -> int =

<fun>
let left = first_leaf_value bin_tree;;
val left : int = 3

6/6/12 20

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with (Leaf n) -> Leaf (f n)
 | Node (left_tree, right_tree) ->
 Node (ibtreeMap f left_tree,
 ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

6/6/12 21

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf

8), Leaf (-5))

6/6/12 22

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with Leaf n -> leafFun n
 | Node (left_tree, right_tree) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun left_tree)
 (ibtreeFoldRight leafFun nodeFun right_tree);;
val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->

int_Bin_Tree -> 'a = <fun>

6/6/12 23

Folding over Recursive Types

let tree_sum =
 ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

General Folding

n  Replace constructors with functions that take
recursively computed values

n  Give a bottom up traversal like fold_right
n  Extra work to do top down (fold_left)

6/6/12 24

6/6/12 25

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
 | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
 | More of ('a tree * 'a treeList);;
type 'a tree = TreeLeaf of 'a | TreeNode of 'a

treeList
and 'a treeList = Last of 'a tree | More of ('a

tree * 'a treeList)

6/6/12 26

Mutually Recursive Types - Values

let tree =
 TreeNode
 (More (TreeLeaf 5,
 (More (TreeNode
 (More (TreeLeaf 3,
 Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))));;

6/6/12 27

Mutually Recursive Types - Values

 val tree : int tree =
 TreeNode
 (More
 (TreeLeaf 5,
 More
 (TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

6/6/12 28

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2

6/6/12 29

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

6/6/12 30

Mutually Recursive Functions

let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

6/6/12 31

Mutually Recursive Functions

fringe tree;;
-  : int list = [5; 3; 2; 7]

6/6/12 32

Nested Recursive Types

type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree

list);;
type 'a labeled_tree = TreeNode of ('a

* 'a labeled_tree list)

6/6/12 33

Nested Recursive Type Values

let ltree =
 TreeNode(5,
 [TreeNode (3, []);
 TreeNode (2, [TreeNode (1, []);
 TreeNode (7, [])]);
 TreeNode (5, [])]);;

6/6/12 34

Nested Recursive Type Values

val ltree : int labeled_tree =
 TreeNode
 (5,
 [TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])

6/6/12 35

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

6/6/12 36

Nested Recursive Type Values

5

3 2 5

1 7

6/6/12 37

Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with TreeNode (x,treelist)
 -> x::flatten_tree_list treelist
 and flatten_tree_list treelist =
 match treelist with [] -> []
 | labtree::labtrees
 -> flatten_tree labtree
 @ flatten_tree_list labtrees;;

6/6/12 38

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
n  Nested recursive types lead to mutually

recursive functions

6/6/12 39

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
 [1; 1; 1; 1; ...]
match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
 match ones with x::_ -> x;;
 ^^^^^^^^^^^^^^^^^^^^^^^^^
- : int = 1

6/6/12 40

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
 and tree_list = [lab_tree; lab_tree];;

6/6/12 41

Infinite Recursive Values

val lab_tree : int labeled_tree =
 TreeNode (2, [TreeNode(...); TreeNode(...)])
val tree_list : int labeled_tree list =
 [TreeNode (2, [TreeNode(...); TreeNode

(...)]);
 TreeNode (2, [TreeNode(...); TreeNode

(...)])]

6/6/12 42

Infinite Recursive Values

match lab_tree
 with TreeNode (x, _) -> x;;
- : int = 2

6/6/12 43

Records

n  Records serve the same programming
purpose as tuples

n  Provide better documentation, more
readable code

n  Allow components to be accessed by label
instead of position
n  Labels (aka field names must be unique)
n  Fields accessed by suffix dot notation

6/6/12 44

Record Types

n  Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

n  person is the type being introduced
n  name, ss and age are the labels, or fields

6/6/12 45

Record Values

n  Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
 {name = "Elsa L. Gunter"; ss = (119, 73,

6244); age = 102}

6/6/12 46

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
 {name = "Joseph Martins"; ss = (325, 40,

1276); age = 22}
student = teacher;;
- : bool = false

6/6/12 47

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

6/6/12 48

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119,

73, 6244)

6/6/12 49

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

6/6/12 50

New Records from Old

let new_id name soc_sec person =
 {person with name = name; ss = soc_sec};;
val new_id : string -> int * int * int -> person

-> person = <fun>
new_id "Guieseppe Martin" (523,04,6712)

student;;
- : person = {name = "Guieseppe Martin"; ss

= (523, 4, 6712); age = 22}

