
6/4/12 1

Programming Languages and
Compilers (CS 421)

Dennis Griffith
0207 SC, UIUC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha, and Elsa Gunter

6/4/12 2

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

6/4/12 3

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun r -> fun x -> x :: r) //comb op
 [] //accumulator cell
 list

6/4/12 4

Folding

n  Can replace recursion by fold_right in any
forward primitive recursive definition
n  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n  Can replace recursion by fold_left in any tail
primitive recursive definition

6/4/12 5

Map from Fold

let map f list =
 fold_right (fun x y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
n  Can you write fold_right (or fold_left)

with just map? How, or why not?

6/4/12 6

Map from Fold

let map f list =
 fold_right (fun x y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
n  Can you write fold_right (or fold_left)

with just map? How, or why not?
n  fold_right (fun x a -> (f x) :: a) list []

6/4/12 7

Higher Order Functions

n  A function is higher-order if it takes a
function as an argument or returns one as
a result

n  Example:
let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>
n  The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

6/4/12 8

Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9
n  Patial application also called sectioning

6/4/12 9

Lambda Lifting

n  You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

6/4/12 10

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
n  Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

6/4/12 11

Partial Application and “Unknown Types”

n  Consider compose plus_two:
let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
n  Compare to lambda lifted version:
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
n  What is the difference?

6/4/12 12

Partial Application and “Unknown Types”

n  ‘_a can only be instantiated once for an expression
f1 plus_two;;
- : int -> int = <fun>
f1 List.length;;
Characters 3-14:
 f1 List.length;;
 ^^^^^^^^^^^
This expression has type 'a list -> int but is here used

with type int -> int

6/4/12 13

Partial Application and “Unknown Types”

n  ‘a can be repeatedly instantiated

f2 plus_two;;
- : int -> int = <fun>
f2 List.length;;
- : '_a list -> int = <fun>

6/4/12 14

Continuations

n  Idea: Use functions to represent the control
flow of a program

n  Method: Each procedure takes a function as
an argument to which to pass its result;
outer procedure “returns” no result

n  Function receiving the result called a
continuation

n  Continuation acts as “accumulator” for work
still to be done

6/4/12 15

Example of Tail Recursion

let rec prod l =
 match l with [] -> 1
 | (x :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
let prod list =
 let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
 in prod_aux list 1;;
 val prod : int list -> int = <fun>

6/4/12 16

Example of Tail Recursion

let rec app fl x =
 match fl with [] -> x
 | (f :: rem_fs) -> f (app rem_fs x);;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

6/4/12 17

Continuation Passing Style

n  Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

6/4/12 18

Example of Tail Recursion & CSP

let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let rec appk fl x k =
 match fl with [] -> k x
 | (f :: rem_fs) -> appk rem_fs x (fun r -> k (f r));;
val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

6/4/12 19

Example of CSP

let rec app fl x =
 match fl with [] -> x
 | (f :: rem_fs) -> f (app rem_fs x);;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let rec appk fl x k =
 match fl with [] -> k x
 | (f :: rem_fs) -> appk rem_fs x (fun r -> k (f r));;
val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b =

<fun>

6/4/12 20

Continuation Passing Style

n  A programming technique for all forms
of “non-local” control flow:
n  non-local jumps
n  exceptions
n  general conversion of non-tail calls to tail

calls

n  Essentially it’s a higher-order version of
GOTO

6/4/12 21

Continuation Passing Style

n  A compilation technique to implement non-
local control flow, especially useful in
interpreters.

n  A formalization of non-local control flow in
denotational semantics (CS 422)

6/4/12 22

Terms

n  A function is in Direct Style when it returns
its result back to the caller.

n  A Tail Call occurs when a function returns
the result of another function call without
any more computations (eg tail recursion)

n  A function is in Continuation Passing Style
when it passes its result to another function.

n  Instead of returning the result to the caller,
we pass it forward to another function.

6/4/12 23

Example

n  Simple reporting continuation:
let report x = (print_int x; print_newline ());;
val report : int -> unit = <fun>

n  Simple function using a continuation:
let plusk a b k = k (a + b)
val plusk : int -> int -> (int -> ’a) -> ’a = <fun>
plusk 20 22 report;;
42
- : unit = ()

