
CS421 Summer 2012 Midterm 1

Name:

NetID:

• You have 75 minutes to complete this exam.

• This is a closed-book exam. You are allowed one 3 × 5 inch (or smaller) card of
notes (both sides may be used). This card is not shared. All other materials (e.g.,
calculators), except writing utensils are prohibited.

• Do not share anything with other students. Do not talk to other students. Do not look
at another students exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you may seek clarification
from myself or one of the TAs. You must use a whisper, or write your question out.
Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 11 pages to the exam, including
one blank page for workspace. Please verify that you have all 11 pages.

• Please write your name and NetID in the spaces above, and also in the provided space
at the top of every sheet.

CS421 Summer 2012 Midterm #1 NetID:

Question Points Score

1 12

2 6

3 5

4 13

5 21

6 20

7 23

Total: 100

Page 2

CS421 Summer 2012 Midterm #1 Name:

Problem 1. (12 points)
For each of the following functions, mark ALL classifications that apply.

(a) (4 points)

let rec foo l = match l with

| [] -> []

| x::[] -> []

| x::y::xs -> y::(foo xs)
√

Forward Recursive © Tail Recursive © Primitive Recursive © Not Recursive

(b) (4 points)

let rec partial_sums l = match l with

| [] -> []

| x::xs -> let p = partial_sums xs

in match p with

| [] -> [x]

| (s::ss) -> (x+.s) :: p

√
Forward Recursive © Tail Recursive

√
Primitive Recursive © Not Recursive

(c) (4 points)

let rec count p l c = match l with

| [] -> c

| x::xs -> count p xs (if p x then c+1 else c)

© Forward Recursive
√

Tail Recursive
√

Primitive Recursive © Not Recursive

Problem 2. (6 points)
In the following question, for each polymorphic type, list the free type variables of that type.

(a) (2 points) α list→ float

(a) α

(b) (2 points) ∀α.β → int list→ α list→ δ

(b) {β, δ}
(c) (2 points) ∀α β γ.α ∗ β → int ∗ (β → α)

(c) ∅

Problem 3. (5 points)
What is the output of the following OCaml program when executed?

let rec f = print_int 1; fun x -> (print_int 5; 2*x)

in print_int (f (f (print_int 3; 2)));;

3. 13558

Page 3

CS421 Summer 2012 Midterm #1 NetID:

Problem 4. (13 points)
In the follow OCaml program give the environment that would be in use at the specified points.

let a = 4;;

let b = a*9;;

let f = 7;;

(* 1 *)

let f x = x+a in

(* 2 *)

a * f 5;;

let g y = f;;

(* 3 *)

Solution:

ρ1 = {a 7→ 4, b 7→ 36, f 7→ 7}
ρ2 = {f 7→ 〈x 7→ x+a, ρ1〉}+ ρ1

ρ3 = {g 7→ 〈y 7→ f, ρ1〉}+ ρ1

Problem 5. (21 points)

(a) (9 points) Write an OCaml datatype that can represent expressions composed of polynomials and
infinite summations that use polynomials for their inner expressions. Your datatype should be
polymorphic over the type of variables and assume that coefficients and exponents are integers. Your
answer should be able to represent expressions like the following:

x+

∞∑
i=0

5i6 a2 + 4b+ 4 10x6
∞∑
k=2

(2x+ k)

Solution:

type ’a poly = Sum of (’a * int * ’a poly)

| Plus of (’a poly * ’a poly)

| Coeff of (int *’a * int)

Page 4

CS421 Summer 2012 Midterm #1 Name:

(b) (9 points) Write an OCaml function that takes a polynomial described by your datatype and counts
the number of variable occurrences in it.

Solution:

let rec count p = match p with

| Sum (_,_,p’) -> 1 + count p’

| Plus (p1,p2) -> count p1 + count p2

| Coeff _ -> 1

(c) (3 points) Write the type of your counting function.

Solution:

count : ’a poly -> int

Page 5

CS421 Summer 2012 Midterm #1 NetID:

Problem 6. (20 points)
Give a polymorphic type derivation for the following expression. You should label each rule with the rule
that was applied in some clear fashion (e.g., next to the large horizontal line).

{} ` let rec f = fun x -> x in f f : int→ int

Solution:

{f : α→ α, x : α} ` x : α
Var

{f : α→ α} ` fun x -> x : α→ α
Fun

†
{} ` let rec f = fun x -> x in f f : int→ int

Rec

where † is the following:

{f : ∀α.α→ α} ` f : (int→ int)→ (int→ int)
Var

{f : ∀α.α→ α} ` f : int→ int
Var

{f : ∀α.α→ α} ` f f : int→ int
App

Page 6

CS421 Summer 2012 Midterm #1 Name:

Problem 7. (23 points)

(a) (7 points) Write a function replace if : (’a -> bool) -> ’a -> ’a list -> ’a list such
that replace if p v lst replaces every element in lst for which p returns true with v. The
function is required to use (only) forward recursion (no other form of recursion). You may not use
any library functions.

let rec replace_if p v lst = ... ;;

val replace_if : (’a -> bool) -> ’a -> ’a list -> ’a list = <fun>

replace_if (fun x -> x > 3) 62 [1;2;3;4;5];;

- : int list = [1; 2; 3; 62; 62]

Solution:

let rec replace_if p v lst =

match lst with [] -> []

| x::xs -> if p x then v::(replace_if p v xs)

else x::(replace_if p v xs)

Page 7

CS421 Summer 2012 Midterm #1 NetID:

(b) (7 points) Write a value replace if base and function replace if rec : (’a -> bool) -> ’a

-> ’a -> ’a list -> ’a list such that

(fun p -> fun v -> fun lst -> List.fold right (replace if rec p v) lst

replace if base)

computes the same results as replace if. There should be no use of recursion or library functions
in defining replace if rec.

let replace_if_base = ... ;;

val replace_if_base : ...

let replace_if_rec p v x r = ... ;;

val replace_if_rec : (’a -> bool) -> ’a -> ’a -> ’a list -> ’a list = <fun>

let replace_if’ p v lst = List.fold_right

(replace_if_rec p v) lst replace_if_base ;;

val replace_if’ : (’a -> bool) -> ’a -> ’a list -> ’a list = <fun>

replace_if’ (fun x -> x > 3) 62 [1;2;3;4;5];;

- : int list = [1; 2; 3; 62; 62]

Solution:

let replace_if_base = []

let replace_if_rec p v x r = (if p x then v else x)::r

Page 8

CS421 Summer 2012 Midterm #1 Name:

(c) (9 points) Write the function replace ifk :(’a -> (bool -> ’b) -> ’b) -> ’a -> ’a list

-> (’a list -> ’b) -> ’b such that replace ifk is the continuation passing style version of the
code you gave for replace if. You should have that

replace ifk (fun x -> fun k -> k (p x)) v lst (fun x -> x)

computes the same results as replace if p v lst. Order of evaluation must be kept when using
operators and functions. Any procedure call in the function must also be in continuation passing
style. You may assume that CPS versions of the standard functions are available (e.g., addk and
consk). Make sure that you are converting your solution into continuation passing style
and not just creating a continuation passing style function that happens to produce
the same result.

Solution:

let rec replace_ifk p v lst k =

match lst with [] -> k []

| x::xs -> p x (fun b ->

if b then replace_ifk p v xs (fun r -> consk v r k)

else replace_ifk p v xs (fun r -> consk x r k))

Page 9

CS421 Summer 2012 Midterm #1 NetID:

A Polymoprhic Type Rules

Γ ` c : φ(τ)
Const where φ(τ) is an

instantiation of the
polymorphic type of c

Γ ` x : φ(τ)
Var where φ(τ) is an in-

stantiation Γ(x)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ⊕ e2 : int
Arith

where ⊕ ∈ {+,−, ∗}
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ⊕ e2 : bool
Rel

where ⊕ ∈ {<,>,=,≤,≥}
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ⊕ e2 : bool
Bool

where ⊕ ∈ {||,&&}

[x : τ1] + Γ ` e : τ2

Γ ` fun x -> e : τ1 → τ2
Fun

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
App

Γ ` ec : bool Γ ` et : τ Γ ` ee : τ

Γ ` if ec then et else ee : τ
If

Γ ` e1 : τ1 [x : Gen(τ1,Γ)] + Γ ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
Let

[x : τ1] + Γ ` e1 : τ1 [x : Gen(τ1,Γ)] + Γ ` e2 : τ2

Γ ` let rec x = e1 in e2 : τ2
Rec

Page 10

CS421 Summer 2012 Midterm #1 Name:

B Scratch Space

Page 11

