CS421 Summer 2012 Midterm 1

Name:	
NetID:	

- You have 75 minutes to complete this exam.
- This is a closed-book exam. You are allowed one 3×5 inch (or smaller) card of notes (both sides may be used). This card is not shared. All other materials (e.g., calculators), except writing utensils are prohibited.
- Do not share anything with other students. Do not talk to other students. Do not look at another students exam. Do not expose your exam to easy viewing by other students. Violation of any of these rules will count as cheating.
- If you believe there is an error, or an ambiguous question, you may seek clarification from myself or one of the TAs. You must use a whisper, or write your question out. Speaking out aloud is not allowed.
- Including this cover sheet and rules at the end, there are 11 pages to the exam, including one blank page for workspace. Please verify that you have all 11 pages.
- Please write your name and NetID in the spaces above, and also in the provided space at the top of every sheet.

NetID:

Question	Points	Score
1	12	
2	6	
3	5	
4	13	
5	21	
6	20	
7	23	
Total:	100	

Page 2
\qquad
Problem 1. (12 points)
For each of the following functions, mark ALL classifications that apply.
(a) (4 points)
let rec foo $1=$ match 1 with
| [] -> []
| x:: [] -> []
| x::y::xs $->y:(f \circ o x s)$
$\sqrt{ }$ Forward Recursive \bigcirc Tail Recursive \bigcirc Primitive RecursiveNot Recursive
(b) (4 points)
let rec partial_sums $1=$ match 1 with
| [] -> []
| x::xs -> let p = partial_sums xs in match p with
| [] -> [x]
| (s::ss) -> (x+.s) :: p
$\sqrt{ }$ Forward Recursive \bigcirc Tail Recursive $\sqrt{ }$ Primitive Recursive \bigcirc Not Recursive
(c) (4 points)
let rec count plos match l with
| [] -> c
| x: :xs -> count p xs (if p x then $c+1$ else c)
\bigcirc Forward Recursive $\sqrt{ }$ Tail Recursive $\sqrt{ }$ Primitive Recursive \bigcirc Not Recursive
Problem 2. (6 points)
In the following question, for each polymorphic type, list the free type variables of that type.
(a) (2 points) α list \rightarrow float
\qquad
(b) (2 points) $\forall \alpha . \beta \rightarrow$ int list $\rightarrow \alpha$ list $\rightarrow \delta$
\qquad
(b)
(c) (2 points) $\forall \alpha \beta \gamma \cdot \alpha * \beta \rightarrow$ int $*(\beta \rightarrow \alpha)$
(c) \qquad

Problem 3. (5 points)
What is the output of the following OCaml program when executed?

```
let rec f = print_int 1; fun x -> (print_int 5; 2*x)
in print_int (f (f (print_int 3; 2)));;
```

3. 13558
\qquad
Problem 4. (13 points)
In the follow OCaml program give the environment that would be in use at the specified points.
```
let a = 4;;
let b = a*9;;
let f = 7;;
(* 1 *)
let f x = x+a in
(* 2 *)
            a * f 5;;
let g y = f;;
(* 3 *)
```


Solution:

$$
\begin{aligned}
\rho_{1} & =\{\mathrm{a} \mapsto 4, \mathrm{~b} \mapsto 36, \mathrm{f} \mapsto 7\} \\
\rho_{2} & =\left\{\mathrm{f} \mapsto\left\langle\mathrm{x} \mapsto \mathrm{x}+\mathrm{a}, \rho_{1}\right\rangle\right\}+\rho_{1} \\
\rho_{3} & =\left\{\mathrm{g} \mapsto\left\langle\mathrm{y} \mapsto \mathrm{f}, \rho_{1}\right\rangle\right\}+\rho_{1}
\end{aligned}
$$

Problem 5. (21 points)

(a) (9 points) Write an OCaml datatype that can represent expressions composed of polynomials and infinite summations that use polynomials for their inner expressions. Your datatype should be polymorphic over the type of variables and assume that coefficients and exponents are integers. Your answer should be able to represent expressions like the following:

$$
x+\sum_{i=0}^{\infty} 5 i^{6} \quad a^{2}+4 b+4 \quad 10 x^{6} \quad \sum_{k=2}^{\infty}(2 x+k)
$$

Solution:

```
type 'a poly = Sum of ('a * int * 'a poly)
    | Plus of ('a poly * 'a poly)
    | Coeff of (int *'a * int)
```

\qquad
(b) (9 points) Write an OCaml function that takes a polynomial described by your datatype and counts the number of variable occurrences in it.

Solution:

```
let rec count p = match p with
    | Sum (_,_,p') -> 1 + count p'
    | Plus (p1,p2) -> count p1 + count p2
    | Coeff _ -> 1
```

(c) (3 points) Write the type of your counting function.

Solution:

count : 'a poly -> int
\qquad

Problem 6. (20 points)

Give a polymorphic type derivation for the following expression. You should label each rule with the rule that was applied in some clear fashion (e.g., next to the large horizontal line).

$$
\} \vdash \text { let } \operatorname{rec} f=\text { fun } x \rightarrow x \text { in } f f: \text { int } \rightarrow \text { int }
$$

Solution:

$$
\frac{\frac{\{\mathrm{f}: \alpha \rightarrow \alpha, \mathrm{x}: \alpha\} \vdash \mathrm{x}: \alpha}{} \mathrm{VAR}}{\frac{\{\mathrm{f}: \alpha \rightarrow \alpha\} \vdash \mathrm{fun} \mathrm{x} \rightarrow \mathrm{x}: \alpha \rightarrow \alpha}{\{\mathrm{f}} \mathrm{FuN} \quad \dagger} \mathrm{REC}
$$

where \dagger is the following:

$$
\frac{\overline{\{\mathrm{f}: \forall \alpha . \alpha \rightarrow \alpha\} \vdash \mathrm{f}:(\text { int } \rightarrow \text { int }) \rightarrow(\text { int } \rightarrow \text { int })} \operatorname{VAR} \quad \overline{\{\mathrm{f}: \forall \alpha . \alpha \rightarrow \alpha\} \vdash \mathrm{f}: \text { int } \rightarrow \text { int }}}{\{\mathrm{f}: \forall \alpha . \alpha \rightarrow \alpha\} \vdash \mathrm{f}: \mathrm{f}: \text { int } \rightarrow \text { int }} \text { ApP }
$$

\qquad

Problem 7. (23 points)
(a) (7 points) Write a function replace_if : ('a -> bool) -> 'a -> 'a list -> 'a list such that replace_if p v lst replaces every element in list for which p returns true with v. The function is required to use (only) forward recursion (no other form of recursion). You may not use any library functions.

```
# let rec replace_if p v lst = ... ;;
val replace_if : ('a -> bool) -> 'a -> 'a list -> 'a list = <fun>
# replace_if (fun x -> x > 3) 62 [1;2;3;4;5];;
- : int list = [1; 2; 3; 62; 62]
```


Solution:

```
let rec replace_if p v lst =
    match lst with [] -> []
        | x::xs -> if p x then v::(replace_if p v xs)
            else x::(replace_if p v xs)
```

\qquad
(b) (7 points) Write a value replace_if_base and function replace_if_rec : ('a -> bool) -> 'a -> 'a -> 'a list -> 'a list such that
(fun p -> fun v -> fun lst -> List.fold_right (replace_if_rec p v) lst replace_if_base)
computes the same results as replace_if. There should be no use of recursion or library functions in defining replace_if_rec.

```
# let replace_if_base = ... ;;
val replace_if_base : ...
# let replace_if_rec p v x r = ... ;;
val replace_if_rec : ('a -> bool) -> 'a -> 'a -> 'a list -> 'a list = <fun>
# let replace_if' p v lst = List.fold_right
(replace_if_rec p v) lst replace_if_base ;;
val replace_if' : ('a -> bool) -> 'a -> 'a list -> 'a list = <fun>
# replace_if' (fun x -> x > 3) 62 [1;2;3;4;5];;
- : int list = [1; 2; 3; 62; 62]
```


Solution:

let replace_if_base = []
let replace_if_rec p v x r = (if p x then velse x): :r
\qquad
(c) (9 points) Write the function replace_ifk : ('a -> (bool -> 'b) -> 'b) -> 'a -> 'a list -> ('a list -> 'b) -> 'b such that replace_ifk is the continuation passing style version of the code you gave for replace_if. You should have that

```
replace_ifk (fun x -> fun k -> k (p x)) v lst (fun x -> x)
```

computes the same results as replace_if p v list. Order of evaluation must be kept when using operators and functions. Any procedure call in the function must also be in continuation passing style. You may assume that CPS versions of the standard functions are available (e.g., addk and consk). Make sure that you are converting your solution into continuation passing style and not just creating a continuation passing style function that happens to produce the same result.

Solution:

```
let rec replace_ifk p v lst k =
    match lst with [] -> k []
        | x::xs -> p x (fun b ->
            if b then replace_ifk p v xs (fun r -> consk v r k)
                                else replace_ifk p v xs (fun r -> consk x r k))
```

\qquad

A Polymoprhic Type Rules

$$
\begin{aligned}
& \frac{\Gamma \vdash e_{1}: \text { int } \quad \Gamma \vdash e_{2}: \text { int }}{\Gamma \vdash e_{1} \oplus e_{2}: \text { int }} \text { ARITH } \quad \text { where } \oplus \in\{+,-, *\} \\
& \frac{\Gamma \vdash e_{1}: \text { int } \quad \Gamma \vdash e_{2}: \text { int }}{\Gamma \vdash e_{1} \oplus e_{2}: \text { bool }} \text { ReL } \\
& \frac{\Gamma \vdash e_{1}: \text { bool } \quad \Gamma \vdash e_{2}: \text { bool }}{\Gamma \vdash e_{1} \oplus e_{2}: \text { bool }} \text { BooL } \\
& \text { where } \oplus \in\{\|, \& \&\} \\
& \frac{\left[x: \tau_{1}\right]+\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \text { fun } x \rightarrow e: \tau_{1} \rightarrow \tau_{2}} \text { FUN } \quad \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}} \text { APP } \\
& \frac{\Gamma \vdash e_{c}: \text { bool } \quad \Gamma \vdash e_{t}: \tau \quad \Gamma \vdash e_{e}: \tau}{\Gamma \vdash \text { if } e_{c} \text { then } e_{t} \text { else } e_{e}: \tau} \text { IF } \\
& \frac{\Gamma \vdash e_{1}: \tau_{1} \quad\left[x: \operatorname{GeN}\left(\tau_{1}, \Gamma\right)\right]+\Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash \text { let } x=e_{1} \text { in } e_{2}: \tau_{2}} \text { Let } \\
& \frac{\left[x: \tau_{1}\right]+\Gamma \vdash e_{1}: \tau_{1} \quad\left[x: \operatorname{GeN}\left(\tau_{1}, \Gamma\right)\right]+\Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash \text { let rec } x=e_{1} \text { in } e_{2}: \tau_{2}} \operatorname{REC}
\end{aligned}
$$

B Scratch Space

