
Lecture 9 — Top-down parsing

• Top-down parsing is a method simple enough to be used for
writing parsers by hand. Compiler writers sometimes prefer
to write parsers by hand because parser generators can be
difficult to use and because some kinds of processing can be
hard to fit into the generator.

• Top-down (recursive descent) parsing

• Simple examples of recognizers and parsers

• FIRST and FOLLOW sets

• Handling non-LL(1) grammars

• Expression grammars

CS 421 — Class 9, 2/14/12 — 1

Top-down parsing

• Top-down, or recursive descent, parsing is a parsing
method where the structure of the parser directly follows
the structure of the cfg.

• Each non-terminal A becomes a function parseA that reads
the input and consumes the part of it corresponding to

an A-sentence.

• Since each production for a non-terminal A represents a
different way to form an A-sentence, the first job of parseA

is to determine which production to use.

• We will consider only the case where that determination is
made by looking at the next input token (the “lookahead
symbol”) and nothing else.

CS 421 — Class 9, 2/14/12 — 2

“Consuming” inputs

• The central idea of a recursive descent parser is that the func-
tion parseA matches an A-sentence as a prefix of the input,
and consumes (or “discards”) that prefix before returning.

• What does “consume” mean?

• Can use global variable input that points to the next
character, and then increment it as a side effect.

• Can use a token list argument and return a suffix of the

argument. Because we don’t know how to write functions
with side effects in OCaml, we will use this method.

CS 421 — Class 9, 2/14/12 — 3

Parsing and recognizing
• A recognizer simply reads the input and returns the remain-

der of the input, and no other value. For us, a recognizer has
type

token list → token list

and can also raise a syntax error. The input is considered
syntactically incorrect if either (1) a syntax error is raised,
or (2) there are still tokens (other than EOF) remaining in
the input after calling the parser.

• A parser reads the input and returns the remainder of the
input and a tree (the parse tree or AST). It has type

token list → token list * ast

CS 421 — Class 9, 2/14/12 — 4

A recursive-descent recognizer
• We will write a recognizer for this grammar:

A → id | ’(’ B ’)’
B → int | A

• Define the token type as

type token = IDENT of string | LPAREN | RPAREN | INT of int | EOF

• What will parseA return for these inputs?

• [LPAREN; INT 3; RPAREN; EOF]

• [IDENT "x"; INT 3; EOF]

• [INT 3; IDENT "x"; EOF]

• [LPAREN; IDENT "x"; RPAREN; IDENT "y"; EOF]

• What will parseB return for these inputs?

• [INT 3; RPAREN; EOF]

• [LPAREN; IDENT "x"; RPAREN; RPAREN; EOF]

CS 421 — Class 9, 2/14/12 — 5

A recursive-descent recognizer
(cont.)

A → id | ’(’ B ’)’
B → int | A

exception SyntaxError

type token = IDENT of string | LPAREN | RPAREN | INT of int | EOF

let rec parseA toklis = match (hd toklis) with

IDENT x -> tl toklist

| LPAREN -> let r = parseB (tl toklis)

in (if hd r = RPAREN then tl r

else raise SyntaxError)

| _ -> raise SyntaxError

and parseB toklis = match (hd toklis) with

INT i -> tl toklis | _ -> parseA toklis

CS 421 — Class 9, 2/14/12 — 6

A recursive-descent parser

• Adding code to construct a parse tree is straightforward.

type token = IDENT of string | LPAREN | RPAREN | INT of int | EOF

type parsetree = A1 of token | A2 of token * parsetree * token

| B1 of token | B2 of parsetree

(* parseA, parseB: token list -> token list * parsetree *)

let rec parseA toklis = match (hd toklis) with

IDENT x -> (tl toklis, A1 (IDENT x))

| LPAREN -> let (r,t) = parseB (tl toklis)

in (if hd r = RPAREN then (tl r, A2(LPAREN, t, RPAREN))

else raise SyntaxError)

| _ -> raise SyntaxError

and parseB toklis = match (hd toklis) with

INT i -> (tl toklis, B1 (INT i))

| _ -> parseA toklis ;;

CS 421 — Class 9, 2/14/12 — 7

A recursive-descent parser (cont.)

• What will parseA return for these inputs?

• [IDENT "x"; INT 3; EOF]

• [LPAREN; INT 3; RPAREN; EOF]

• What will parseB return for these inputs?

• [INT 3; RPAREN; EOF]

• [LPAREN; IDENT "x"; RPAREN; RPAREN; EOF]

CS 421 — Class 9, 2/14/12 — 8

Top-down parsing, formally
• Given grammar G, for each A ∈ N , define:

parseA toklis = based on hd toklis, choose production;
if A→X1X2 . . . Xn chosen: parseXn(. . . (parseX2 (parseX1 toklis)). . .)
else if A→Y1Y2 . . . Yp chosen: parseYp(. . . (parseY2 (parseY1 toklis)). . .)
else if etc.

and for each t ∈ T , define

parset toklis = if hd toklis = t then tl toklis

else raise SyntaxError

• Note that if n = 0, parseA returns toklis.

CS 421 — Class 9, 2/14/12 — 9

Top-down recognizer exercise
L → E R
E → id
R → ; L | ε

type token = IDENT of string | SEMIC | EOF

let rec parseL toklis =

and parseE toklis =

and parseR toklis =

and parseIDENT toklis =

and parseSEMIC toklis =

CS 421 — Class 9, 2/14/12 — 10

Top-down recognizer exercise redone
• In practice, we never define separate functions for tokens, but instead

inline them. Rewrite your parser with parseIDENT and parseSEMIC inlined:

L → E R
E → id
R → ; L | ε

type token = IDENT of string | SEMIC | EOF

let rec parseL toklis =

and parseE toklis =

and parseR toklis =

CS 421 — Class 9, 2/14/12 — 11

What now?

• We are “done”! Given a grammar, we can simply transcribe
it directly into a recursive descent recognizer. (Then, if you
like, inline the boring parts, and add tree-building code.)

• What’s left to talk about? Couple of things...

• The crucial point is where we said, “based on hd toklis,
choose production.” That is not always easy — in fact, it
is not always possible. It all depends on the grammar.

• We need to discuss how to make that decision, and when

it is actually impossible.

• First, there is one situation where our parsers will definitely
not work...

CS 421 — Class 9, 2/14/12 — 12

Left recursion

• The grammar

L → L E ; | ε
E → id

produces this parser:

let rec parseL toklis = match hd toklis with

IDENT _ -> parseSEMIC (parseE (parseL toklis))

| _ -> toklis

and parseE toklis = parseIDENT toklis

and parseIDENT toklis = ... and parseSEMIC toklis = ...

• Do you see the problem?

CS 421 — Class 9, 2/14/12 — 13

A couple of new definitions...

• Left-recursive grammars definitely won’t work. (We’ll say
a little more about this later.) We now consider the other
problem: deciding which production to use.

• We already have the notion of an A-sentence — a string of
terminals that can be derived from A (in a given grammar).
Now extend that to any sequence α of grammar symbols:

If α = X1X2 . . . Xn ∈ S∗, an α-sentence is any string of
terminals consisting of an X1-sentence followed by an X2-
sentence, etc. (If Xi is a terminal symbol, then an “Xi-
sentence” consists of just Xi itself.)

• One more definition: α ∈ S∗ is nullable if ε is an α-sentence.
That is: either n = 0 or α consists of nullable non-terminals.

CS 421 — Class 9, 2/14/12 — 14

α-sentences exercise

• Given this grammar:

A → int | (B)
B → + A B | int | ε

give examples of α-sentences for each α:

• 3 :

• A :

• + A B :

• (+ A B) :

CS 421 — Class 9, 2/14/12 — 15

“choose production based on hd
toklis”

• We are in parseA trying to decide which production to use.
Use the idea of “FIRST sets” (we ignore ε-productions for
the moment):

• For α ∈ S∗, FIRST(α) is the set of all terminal symbols that
can be the first symbol in an α-sentence.

• To choose the production for parseA, find the unique

production A→ α such that hd toklis ∈ FIRST(α).

• If there is no such production, reject the input.

• If the production is not unique — that is, if the FIRST sets
for all productions from A are not mutually disjoint — you
can’t parse this grammar by recursive descent!

CS 421 — Class 9, 2/14/12 — 16

FIRST set examples
A → id | (B)
B → int | A

FIRST(id) = { } FIRST(int) = { }

FIRST((B)) = { } FIRST(A) = { }

A → int | (B)
B → A+B

FIRST(int) = { } FIRST(A+B) = { }

FIRST((B)) = { }

CS 421 — Class 9, 2/14/12 — 17

Dealing with ε-productions

• If the grammar contains an ε-production, we can use it if no
other production works.

• Determining which production to use changes to this:

• For α ∈ S∗, FIRST(α) is as defined above, except: if α is
nullable, add the special symbol • to FIRST(α).

• For any non-terminal, if the FIRST sets of its right-hand
sides are not mutually disjoint, this grammar cannot be
parsed top-down.

• In parseA, choose the production A → α such that hd

toklis ∈ FIRST(α); if there is none, choose the production
for which • ∈ α; if there is none, reject the input.

CS 421 — Class 9, 2/14/12 — 18

Another FIRST sets example
E → T E′

E′ → ε | + E
T → P T ′

T ′ → ε | * T
P → id | (E)

FIRST(TE′) = { }

FIRST(ε) = { } FIRST(+E) = { }

FIRST(PT ′) = { }

FIRST(ε) = { } FIRST(*T) = { }

FIRST(id) = { } FIRST((E)) = { }

CS 421 — Class 9, 2/14/12 — 19

Another FIRST sets example (cont.)

• Write the first few parsing functions for the above grammar:

E → T E′

E′ → ε | + E
T → P T ′

T ′ → ε | * T
P → id | (E)

let rec parseE toklis =

and parseE’ toklis =

and parseT toklis =

CS 421 — Class 9, 2/14/12 — 20

FOLLOW sets

• There remains a subtle problem with our parser construction
process. Consider this grammar:

A → BC
B → b | ε
C → b c

• This seems to be parsable top-down — i.e. FIRST sets of
right-hand sides are non-overlapping. However, input bc is
not handled correctly.

• Problem is, if b is the first input, we cannot tell which of
these will be the correct parse tree:

CS 421 — Class 9, 2/14/12 — 21

LL(1) grammars
• For non-terminal A, FOLLOW(A) is the set of terminal

symbols that can immediately follow A in a sentential form.

• Def. A grammar is LL(1) iff it can be parsed correctly using
recursive descent, with only one lookahead symbol.

• Thm A grammar is LL(1) under the following conditions:

• For any A ∈ S, FIRST sets of all right-hand sides of A are
mutually disjoint.

• If there are productions A → α and A → β, and • ∈
FIRST(α), then there cannot be a terminal symbol t such
that t ∈ FOLLOW(A) and t ∈ FIRST(β).

• It has no left-recursive rules.

• Note that no ambiguous grammar is LL(1).

CS 421 — Class 9, 2/14/12 — 22

Non-LL(1) grammars

• Many grammars are not LL(1). There are two common prob-
lems that can sometimes be solved by fairly simple changes
in the grammar.

• If two productions from A start the same way, you can use
left factoring:

A → α β | α γ ⇒ A → α B

B → β | γ

CS 421 — Class 9, 2/14/12 — 23

Non-LL(1) grammars (cont.)

• A grammar is left-recursive if there is a non-terminal A and
α ∈ S∗ such that Aα is an A-form.

• Left-recursion can be direct (i.e. there is a rule E → E+T),
or indirect (there are rules E → E′ and E′ → E + T).

• Left-recursive grammars can never be LL(1), because the
left-recursion will lead to an infinite loop.

• Sometimes, left-recursion can be removed:

A → A α | β ⇒ A → β B

B → ε | α B

CS 421 — Class 9, 2/14/12 — 24

Handling expressions

• Recall from last week: The left-recursive, stratified expres-
sion grammar correctly enforces left-associativity and prece-
dence of multiplication:

E → E + T | T
T → id | T * id

• However, that grammar cannot be parsed with recursive
descent because it is left-recursive.

• The right-recursive grammar

E → T + E | T
T → id | id * T

is not LL(1), but ...

CS 421 — Class 9, 2/14/12 — 25

Handling expressions (cont.)

• that can be fixed by left-factoring:

E → T + E | T
T → id | id * T

⇒

E → T E’
E’ → ε | + E
T → id T’
T’ → ε | * T

• This is LL(1). Unfortunately, it has really ugly parse trees.
But the real problem with it is that it enforces right-
associativity.

• Can we fix the right-associativity problem? Yes and no:
We can’t fix the grammar — no right-recursive grammar
can enforce left-associativity, and no left-recursive grammar
is LL(1). But, ...

CS 421 — Class 9, 2/14/12 — 26

Handling expressions (cont.)

• ... we can fix the AST. Start with a straightforward parser.
The AST reflects the shape of the concrete syntax tree, so
enforces right-associativity.

type ast = ID of string | ADD of ast * ast | MULT of ast * ast | NONE

let rec parseE toklis = let (r,t) = parseT toklis

in let (r’,t’) = parseE’ r

in (r’, if t’=NONE then t else ADD(t,t’))

and parseE’ toklis = if hd toklis = PLUS

then parseE (tl toklis)

else (toklis, NONE)

...

parseE [IDENT "x"; PLUS; IDENT "y"; PLUS; IDENT "z"; EOF];;

- : token list * ast = ([EOF], ADD (ID "x", ADD (ID "y", ID "z")))

CS 421 — Class 9, 2/14/12 — 27

Handling expressions (cont.)
• But we can just re-jigger the AST as we parse. Define:

let rec addplus t1 t2 = match t2 with

ADD(ADD(t21, t22) as a, t2’) -> ADD(addplus t1 a, t2’)

| ADD(t21, t22) -> ADD(ADD(t1, t21), t22)

| _ -> ADD(t1, t2)

and change parseE in one place:

let rec parseE toklis = let (r,t) = parseT toklis

in let (r’,t’) = parseE’ r

in (r’, if t’=NONE then t else addplus t t’)

• Now we get left-recursion:

parseE [IDENT "x"; PLUS; IDENT "y"; PLUS; IDENT "z"; EOF];;

- : token list * ast = ([EOF], ADD (ADD (ID "x", ID "y"), ID "z"))

CS 421 — Class 9, 2/14/12 — 28

Wrap-up

• Today we discussed:

• Top-down (recursive descent) parsing

• FIRST and FOLLOW sets, used in constructing top-down parsers (and
in deciding whether a grammar can be parsed top-down).

• Handling expressions top-down. (See supplementary notes on web
for fuller version of this discussion.)

• We discussed it because:

• It is a method that can be used for hand-writing parsers, which is
sometimes easier than using a generator.

• In the next class, we will:

• Begin to talk about the “back end” of the compiler

• What to do now:

• HW5

CS 421 — Class 9, 2/14/12 — 29

