
Lecture 7-8 — Context-free
grammars and bottom-up parsing

• Language syntax is described by context-free grammars, and
the job of the parser is to transform a (syntactically correct)
input to a tree. A cfg defines a set of syntax trees; abstract
syntax trees are a simplified version of those.

• Topics for these two classes are:

• Ambiguity and expression grammars

• Bottom-up (shift/reduce) parsing

• ocamlyacc

CS 421 — Class 7–8, 2/7/12-2/9/12 — 1

Grammar for (almost) MiniJava
Program -> ClassDeclList

ClassDecl -> class id { VarDeclList MethodDeclList }

VarDecl -> Type id ;

MethodDecl -> Type id (FormalList) { VarDeclList StmtList return Exp ; }

Formal -> Type id

Type -> int [] | boolean | int | id

Stmt -> { StmtList } | if (Exp) Stmt else Stmt

| while (Exp) Stmt | System.out.println (Exp) ;

| id = Exp ; | id [Exp] = Exp ;

Exp -> Exp Op Exp | Exp [Exp] | Exp . length

| Exp . id (ExpList) | integer | true | false | id

| this | new int [Exp] | new id () | ! Exp | (Exp)

Op -> && | < | <= | == | + | - | *

ExpList -> Exp ExpRest |

ExpRest -> , Exp ExpRest |

FormalList -> Type id FormalRest |

FormalRest -> , Type id FormalRest |

ClassDeclList = ClassDeclList VarDecl |

MethodDeclList = MethodDeclList MethodDecl |

VarDeclList = VarDeclList VarDecl |

StmtList = StmtList Stmt |

CS 421 — Class 7–8, 2/7/12-2/9/12 — 2

Parse tree example

• Grammar describes a set of parse trees (aka syntax trees,
concrete syntax trees).

• E.g. program class C {int f () { return 0; }} has this
parse tree:

• It is easy to see the relationship between this concrete syntax
tree and the abstract syntax of MiniJava.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 3

Context-free grammar (cfg) notation

• A CFG is a set of productions A → X1X2 . . . Xn (n ≥ 0). If
n = 0, we may write either A → or A → ε.

• A,B,C.... ∈ N , the set of non-terminals. One non-terminal
in the grammar is the start symbol.

• T is the set of tokens, aka terminals

• X,Y, Z ∈ S = N ∪ T , the set of grammar symbols

• u, v, w ∈ T ∗

• α, β, γ ∈ S∗

• Productions A→ α, A→ β, ..., abbreviated as A→ α | β | ...

• A parse tree is a tree whose root is labelled with the start

CS 421 — Class 7–8, 2/7/12-2/9/12 — 4

symbol, and whose other nodes are labelled with grammar
symbols or the special symbol “•”. Furthermore, if a node
labelled with non-terminal B has children, there must be a
production B → X1X2 . . . Xn such that either: the node
has exactly n children and they are labelled X1, X2, . . . , Xn;
or n = 0 (i.e. an ε-production) and the node has exactly one
child, which is labelled “•”.

• N.B. The above definition does not require that every

non-terminal node have children.

• A sentential form is any frontier of a parse tree (i.e. labels
of the leaf nodes), with •’s deleted. An sentence is a
sentential form in T ∗.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 5

Exercises on cfg notation
E → E + T | T
T → T ∗ P | P
P → id | int | (P)

• Parse tree whose frontier is: x * 10 + y:

• Parse tree whose frontier is: x * 10 + T:

CS 421 — Class 7–8, 2/7/12-2/9/12 — 6

More cfg notation

• A parse tree from A is defined the same as a parse tree,
except the root is labelled with A.

• Similarly, an A-form is the frontier of a parse tree from A

(with •’s deleted), and an A-sentence is an A-form consisting
only of tokens.

• A ∈ N is nullable if ε is an A-sentence.

• An ambiguous grammar is one for which at least one
sentence has more than one parse tree.

• A parser is a function of type string → AST ∪ {error}. (A
recognizer is a function of type string → bool.)

CS 421 — Class 7–8, 2/7/12-2/9/12 — 7

More exercises on cfg notation
E → E + T | T
T → T ∗ P | P
P → id | int | (P)

•Parse tree from T whose
frontier is: x * 10:

•A T -form that is not a
T -sentence, and its parse tree:

CS 421 — Class 7–8, 2/7/12-2/9/12 — 8

Extended cfg’s

• An extended cfg is one whose right-hand sides can contain
regular expression operations ∗, +, and ?. These are used to
abbreviate ordinary context-free rules:

• β∗ should be replaced by a new non-terminal, say B, and
additional rules B → ε | βB (or, equivalently, B → ε | Bβ)

• β+ should be replaced by a new non-terminal, say B, and
additional rules B → β | βB (or, equivalently, B → β | Bβ)

• β? should be replaced by a new non-terminal, say B, and
additional rules B → β | .

CS 421 — Class 7–8, 2/7/12-2/9/12 — 9

Exercises on extended cfg notation
E → EA
A → ε | A+ T
T → T (∗P)∗
P → id | int | (P)

• Transform the rule for T to remove the Kleene star.

• Show that both E+T and EA+T are sentential forms:

CS 421 — Class 7–8, 2/7/12-2/9/12 — 10

ASTs for expressions

• Recall from lecture 3 how we defined a simple abstract syntax
for expressions and an eval function for it:

type expr = Int of int | Plus of expr*expr

| Times of expr*expr | Negate of expr

let rec eval e = match e with

Int i -> i

| Plus (e1, e2) -> eval e1 + eval e2

| Times (e1, e2) -> eval e1 * eval e2

| Negate e1 -> -(eval e1)

CS 421 — Class 7–8, 2/7/12-2/9/12 — 11

Expression grammars

• The expression 3 + 4*5 + -7 has AST

The shape of this AST represents the precedence of multi-
plication and the left-associativity of addition. This ensures
that eval would return the correct value.

• Parsing produces a parse tree which is translated to an
AST. It simplifies this translation greatly if the shape of the
concrete syntax tree correctly represents precedences and
associativities of operators.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 12

Some expression grammars
GA: E → id | E - E | E * E

GB: E → id | id - E | id * E

GC: E → id | E - id | E * id

GD: E → T - E | T
T → id | id * T

GE: E → E - T | T
T → id | T * id

GF : E → T E′

E′ → ε | - E
T → id T′

T′ → ε | * T

CS 421 — Class 7–8, 2/7/12-2/9/12 — 13

• GA: E → id | E - E | E * E

• x - y * z x - y - z

• Ambiguous? Precedence? Associativity?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 14

• GB: E → id | id - E | id * E

• x - y * z x - y * z - w

• x * y - z

• Ambiguous? Precedence? Associativity?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 15

• GC: E → id | E - id | E * id

• x - y * z x - y * z - w

• x * y - z

• Ambiguous? Precedence? Associativity?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 16

•GD: E → T - E | T
T → id | id * T

• x - y * z x * y - z x - y - z

• Ambiguous? Precedence? Associativity?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 17

•GE: E → E - T | T
T → id | T * id

• x - y * z x * y - z x - y - z

• Ambiguous? Precedence? Associativity?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 18

•GF : E → T E′

E′ → ε | - E
T → id T′

T′ → ε | * T

• x - y * z x * y - z x - y - z

• Ambiguous? Precedence? Associativity?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 19

Parser generators

• Like lexer generators, these are programs that input a spec-
ification — in the form of a context-free grammar, with
an action associated with each production — and output a
parser.

• The most famous of all parser generators is yacc — which,
ironically, stands for “yet another compiler compiler.” Origi-
nally written to generate parsers in C, it has been copied in
many other languages. We will use ocamlyacc.

• We start with a small but complete example.

• Next week, we will discuss how to write a parser by hand,
using the method of recursive descent.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 20

Example - expression grammar

• In this example, we will use ocamlyacc to create a parser for
this grammar:

E → T | E + T | E - T
T → P | T * P | T / P
P → id | (E)

• It will product ASTs of type exp:

(* File: exp.ml *)

type exp =

Plus of exp * exp

| Minus of exp * exp

| Mult of exp * exp

| Div of exp * exp

| Id of string

CS 421 — Class 7–8, 2/7/12-2/9/12 — 21

Example - exprlex.mll
{ type token = PlusT | MinusT | TimesT | DivideT

| OParenT | CParenT | IdT of string | EOF }

let numeric = [’0’ - ’9’]

let letter = [’a’ - ’z’ ’A’ - ’Z’]

rule tokenize = parse

| "+" {PlusT}

| "-" {MinusT}

| "*" {TimesT}

| "/" {DivideT}

| "(" {OParenT}

| ")" {CParenT}

| letter (letter | numeric | "_")* as id {IdT id}

| [’ ’ ’\t’ ’\n’] {tokenize lexbuf}

| eof {EOF}

CS 421 — Class 7–8, 2/7/12-2/9/12 — 22

Example - exprparse.mly
%token <string> IdT

%token OParenT CParentT TimesT DivideT PlusT MinusT EOF

%start main

%type <exp> main

%%

expr:

term {$1}

| expr PlusT term {Plus($1,$3)}

| expr MinusT term {Minus($1,$3)}

term:

factor {$1}

| term TimesT factor {Mult($1,$3)}

| term DivideT factor {Div($1,$3)}

factor:

IdT {Id $1}

| OParenT expr CParenT {$2}

main:

| expr EOF {$1}

CS 421 — Class 7–8, 2/7/12-2/9/12 — 23

Shift-reduce parsing

• ocamlyacc uses a method of parsing known as shift/reduce,
a.k.a. bottom-up parsing. Here’s how it works:

• Keep a stack of grammar symbols (initially empty). Based
on this stack, and the next input token (“lookahead sym-
bol”), take one of these actions:

• Shift: Move lookahead symbol to stack

• Reduce A → α: Symbols on top of stack are α; replace
them by A. (If you create a tree node here, you can

construct the parse tree while parsing.)

• Accept: When stack consists of just the start symbol,
and input is exhausted

• Reject

CS 421 — Class 7–8, 2/7/12-2/9/12 — 24

Shift-reduce example 1

• L → L ; E | E
E → id

Input: x; y

CS 421 — Class 7–8, 2/7/12-2/9/12 — 25

Shift-reduce example 2

• E → E + T | T
T → T ∗ P | P
P → id | int

Input: x + 10 * y

CS 421 — Class 7–8, 2/7/12-2/9/12 — 26

Parsing conflicts

• Parsers for programming languages must be very efficient,
but no efficient method for parsing arbitrary cfg’s is known.
So all parser generators accept only certain grammars. The
hardest part of using any parser generator is getting the
grammar into a form the parser generator will accept.

• yacc (and ocamlyacc) accept a class of grammars known as
LALR(1) grammars. We will not be able to describe exactly
what distinguishes this class; that is done in CS 426.

• If you present a non-LALR(1) grammar to ocamlyacc, it will
report an error message, called a conflict.

• To understand how to deal with conflicts, we need to look
at shift-reduce parsing a little closer.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 27

S/R parsing ≡ parse tree

• Each shift-reduce parse — i.e. each sequence of s/r actions
— produces a unique parse tree.

• Every parse tree is built by a unique s/r parse:

• Traverse the tree in post-order. A leaf node corresponds to
a shift action, and an internal node to a reduce action.

• An LALR(1) parser generator will accept a grammar only if
it can determine, based on the stack and lookahead symbol,
the unique correct action.

• It follows that ambiguous grammars can never be LALR(1).

CS 421 — Class 7–8, 2/7/12-2/9/12 — 28

Shift-reduce example 3

• Grammar: E → E + E | E ∗ E | id
Input: x + y + z

Show a parse tree, and corresponding s/r parse, that repre-
sents left-associativity of addition.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 29

Shift-reduce example 3 (cont.)

• Grammar: E → E + E | E ∗ E | id
Input: x + y + z

Show a parse tree, and corresponding s/r parse, that repre-
sents right-associativity of addition.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 30

Dealing with ambiguity

• yacc has a special trick for dealing with ambiguity: an-
notations telling the parser explicitly what to do in some
cases.

• For the previous grammar, there are four interesting inputs:
x+y+z, x*y*z, x+y*z, x*y+z.

• Consider x+y+z. It has two parse trees. For both, the stack
looks the same until the second + is the lookahead symbol.

• What is the right decision?

CS 421 — Class 7–8, 2/7/12-2/9/12 — 31

Dealing with ambiguity (cont.)

• For x*y*z, consider where the two stack configurations that
can occur for the two parse trees differ. What is the correct
decision?

• Do the same for x+y*z:

• and for x*y+z:

CS 421 — Class 7–8, 2/7/12-2/9/12 — 32

Precedence declarations

• Looking at these four cases, we can see that they will be
parsed correctly if we follow these rules:

• If the operator nearest the top of the stack and the looka-
head symbol have the same precedence, then shift if the op-
erator is right-associative, and reduce if it is left-associative.

• If the operator nearest the top of the stack has higher

precedence than the lookahead symbol, then reduce; oth-
erwise, shift.

• ocamlyacc will follow these rules if you tell it which oper-
ators have higher precedence, and which are left- or right-
associative. Do that using precedence declarations...

CS 421 — Class 7–8, 2/7/12-2/9/12 — 33

Precedence declarations (cont.)

• Precedence declarations are added to the ocamlyacc specifi-
cation after the %token declarations. Syntax:

• %left symbol ... symbol

• %right symbol ... symbol

• %nonassoc symbol ... symbol

• Two symbols appearing in the same precedence declaration
have the same precedence and the given associativity. (If
they appear in a %nonassoc declaration, they cannot follow
one another, e.g. x < y < z.)

• Two symbols appearing in different precedence declarations
have difference precedences: the one that comes earlier has
lower precedence.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 34

Precedence declaration example

• Recall this ocamlyacc specification:

expr:

term {$1}

| term PlusT expr {Plus($1,$3)}

| term MinusT expr {Minus($1,$3)}

term:

factor {$1}

| factor TimesT term {Mult($1,$3)}

| factor DivideT term {Div($1,$3)}

factor:

IdT {Id $1}

| OParenT expr CParenT {$2}

main:

| expr EOF {$1}

CS 421 — Class 7–8, 2/7/12-2/9/12 — 35

Precedence declarations (cont.)

• This can be simplified with precedence declarations (after
the %token declarations):

%left PlusT MinusT

%left TimesT DivideT

%start main

%type <expr> main

%%

expr:

IdT {Id $1}

| expr PlusT expr {Plus($1,$3)}

| expr MinusT expr {Minus($1,$3)}

| expr TimesT expr {Plus($1,$3)}

| expr DivideT expr {Minus($1,$3)}

| OParenT expr CParenT {$2}

main:

| expr EOF {$1}

CS 421 — Class 7–8, 2/7/12-2/9/12 — 36

Debugging ocamlyacc specifications
• In doing MP4, the main question will be: what operators are

causing conflicts? Once you’ve identified them, you can add
precedence declarations.

• When you run ocamlyacc, it will report the number of
conflicts. Running with the -v option produces a file with the
extension .output, containing details.

• E.g. grammar Expr → Expr + Expr | id has a conflict.
Search for “conflict” in the .output file:

6: shift/reduce conflict (shift 5, reduce 1) on plus

state 6

Expr : Expr . plus Expr (1)

Expr : Expr plus Expr . (1)

This says that there is a problem with the plus token.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 37

Constructing AST’s

• Precedence rules make it easier to construct AST’s, because
concrete syntax is closer to abstract syntax.

• Different non-terminals can produce different types of val-
ues. An important case is “list-like” syntax categories. E.g.
consider this grammar:

funcall → id (arglist)

arglist → funcall arglistrest |
arglistrest → , funcall arglistrest |

• Suppose our abstract syntax is

type funcall = Funcall of string * (funcall list)

CS 421 — Class 7–8, 2/7/12-2/9/12 — 38

• Here is how to do this in ocamlyacc:

funcall:

IdT OParenT arglist CParenT { Funcall($1, $3) }

arglist:

funcall arglistrest { $1 :: $2 }

| { [] }

arglistrest:

CommaT funcall arglistrest { $2 :: $3 }

| { [] }

CS 421 — Class 7–8, 2/7/12-2/9/12 — 39

Bonus topic: A little LR theory...

• The shift-or-reduce decision seems very mysterious: We
know what to do when we already have the parse tree, but
how can we know, based only on the grammar, what will be
the correct action in every case?

• We can start by looking at the “stack configurations” of s/r
parses. Define SC(G) = { α ∈ S∗ | α can be the stack in a
shift-reduce parse for G}.

• Consider this example: A → id | (A)

CS 421 — Class 7–8, 2/7/12-2/9/12 — 40

More examples of SC(G)
E → E + T | T
T → id

E → T + E | T
T → id

CS 421 — Class 7–8, 2/7/12-2/9/12 — 41

A little LR theory (cont.)

• Theorem [Knuth] For any grammar G, SC(G) is a finite-
state language over S.

• yacc starts by constructing the “characteristic DFA” for the
specified grammar. To parse a sentence, repeat the following:

• Take the stack and concatenate the lookahead symbol. If
the result is in SC(G), then shift; o/w reduce.

• Actually, constructing the characteristic DFA is just the start.
The simple parsing method just given does not always work.
(E.g. even when it says to reduce, it may not be clear which
production to reduce by.) The full construction of the parser
is quite involved; see CS426, or a compiler textbook.

CS 421 — Class 7–8, 2/7/12-2/9/12 — 42

Wrap-up

• Today and Tuesday, we discussed:

• Cfg’s, parsing, expression grammars, and ambiguity

• Shift/reduce parsing and ocamlyacc

• We discussed it because:

• ocamlyacc-type parser generators are widely-used tools for generating
parsers.

• Next week, we will:

• Talk about top-down parsing, a relatively simple way to write parsers
by hand.

• What to do now:

• HW4 (written homework)

CS 421 — Class 7–8, 2/7/12-2/9/12 — 43

