
Lecture 4 — Abstract syntax

• In this class, you will see some examples of abstract syntax
as expressed in OCaml, and write functions on ASTs. Writing
recursive functions on ASTs is one of the key skills needed to
write compilers.

Specifically, we will work with abstract syntax for:

• A simple expression language

• A simple expression language with a let construct

• MiniJava (a subset of Java)

CS 421 — Class 4, 1/24/13 — 1

Review from Tuesday’s class
• Here is an abstract syntax for simple arithmetic expressions

as an OCaml data type:

type expr = Int of int | Plus of expr*expr

| Times of expr*expr | Negate of expr

• Show the abstract syntax tree for expression 4+-(7*-8+4):

• Give the OCaml expression of type expr for that tree:

CS 421 — Class 4, 1/24/13 — 2

Exercises using expr

• Write the function eval: expr → int, which evaluates
its argument, e.g. eval (Times(Negate(Int 5), Int 6)) =
-30.

let rec eval e = match e with

Int i ->

| Plus(e1, e2) ->

| Times(e1, e2) ->

| Negate e ->

CS 421 — Class 4, 1/24/13 — 3

Exercises using expr (cont.)

• For a little more practice, write eval for this slightly different
definition of type expr:

type expr = Int of int | Binop of bop * expr * expr

| Unop of uop * expr

and bop = Plus | Times

and uop = Negate

let rec eval e = match e with

Int i ->

| Binop(op, e1, e2) ->

| Unop(op, e) ->

CS 421 — Class 4, 1/24/13 — 4

Expressions w/ let

• If we add let-bound names to arithmetic expressions, we can
write expressions like let x=3 in let y=x*x in x+y. Here’s
an abstract syntax for this language:

type expr = Int of int | Binop of bop * expr * expr

| Var of string | Let of def * expr

and def = string * expr

and bop = Plus | Times

• Write the expr corresponding to let x=3 in let y=x*x in

x+y.

CS 421 — Class 4, 1/24/13 — 5

Expressions w/ let (cont.)

• Evaluating expressions with let is harder because expressions
can contain variables. Let’s start by evaluating expressions
that can contain variables but not let. The values of the
variables are given by a list of type (string * int) list,
called st for “store,” which is an argument to eval. We need
to write a function to look up values in this list:

let rec lookup x st = match st with

CS 421 — Class 4, 1/24/13 — 6

Expressions w/ let (cont.)

• Write the eval function for expressions with variables but
not let.

type expr = Int of int | Binop of bop * expr * expr

| Var of string | Let of def * expr

and def = string * expr

and bop = Plus | Times

let rec eval e st = match e with

Int i ->

| Var(s) ->

| Binop(b, e1, e2) ->

CS 421 — Class 4, 1/24/13 — 7

Expressions w/ let (cont.)

• To evaluate lets, we need a way to add variables to the store.
But that’s easy: to give x the value n, just cons (x,n) to the
front of the store.

• Write eval including let. The other clauses are unchanged:

let rec eval e store = match e with

Int i ->

| Var(s) ->

| Binop(b, e1, e2) ->

| Let((x,e1), e2) ->

CS 421 — Class 4, 1/24/13 — 8

Abstract syntax of MiniJava

• In the first half of the semester, we will build a compiler for a
Java-like language called MiniJava. Over the new few weeks,
we will build the “front end” of that compiler, whose primary
purpose is to transform source files into abstract syntax trees.

• In MP 2, you will write some functions on the abstract syntax
for MiniJava. That abstract syntax is given here; to help you
understand what it means, we have shown for some cases
the correspondence between abstract and concrete syntax in
a box after each constructor declaration.

type program = Program of (class_decl list)

Program [C1; C2; . . .] ⇔ C1 C2 . . .

CS 421 — Class 4, 1/24/13 — 9

and class_decl = Class of id * id

* (var_decl list) * (method_decl list)

Class (c, s, vs, ms) ⇔ class c extends s { vs ms }

and method_decl = Method of exp_type * id * ((exp_type * id) list)

* (var_decl list) * (statement list) * exp

Method (t, m, args, vars, ss, e) ⇔ t m (args) { vars ss return e; }

and var_decl = Var of var_kind * exp_type * id

Var (Static, t, x) ⇔ static t x Var (NonStatic, t, x) ⇔ t x

and var_kind = Static | NonStatic

and statement = Block of (statement list)

Block [s1, s2, . . .] ⇔ s1 s2 . . .

CS 421 — Class 4, 1/24/13 — 10

| If of exp * statement * statement

If (e, s1, s2) ⇔ if (e) s1 else s2

| While of exp * statement

While (e, s) ⇔ while (e) s

| Println of exp

Println (e) ⇔ System.out.println(e)

| Assignment of id * exp

Assignment (x, e) ⇔ x = e;

| ArrayAssignment of id * exp * exp

ArrayAssignment (x, e1, e2) ⇔ x[e1] = e2;

| Break

| Continue

CS 421 — Class 4, 1/24/13 — 11

and exp = Operation of exp * binary_operation * exp

| Subscript of exp * exp

Subscript (e1, e2) ⇔ e1[e2]

| Integer of int

| Id of id

| Length of exp

| MethodCall of exp * id * (exp list)

MethodCall (e, f, args) ⇔ e.f(args)

| FieldRef of exp * id

| True

| False

| This

| NewId of id

NewId (C) ⇔ new C()

| NewArray of exp_type * exp

CS 421 — Class 4, 1/24/13 — 12

NewArray (t, e) ⇔ new t[e]

| Not of exp

| Null

| String of string

| Float of float

and binary_operation = And | Or

| LessThan | GreaterThan | LessThanEq | GreaterThanEq | Equal

| Plus | Minus | Multiplication | Division

and exp_type = ArrayType of exp_type

| BoolType

| IntType

| ObjectType of id

| StringType

| FloatType

and id = string;

CS 421 — Class 4, 1/24/13 — 13

Ex: pretty-print expressions
• Write part of the definition of pp : exp → string, that produces a parsable

string version of its argument. (pp stands for “pretty-print”.) We repeat

the corresponding parts of the abstract syntax for reference. pp bop is an

auxiliary function you can use.

and exp = Operation of exp * binary_operation * exp

| Subscript of exp * exp | Integer of int | Id of id | ...

let pp_bop binop = match binop with And -> "&&" | LessThan -> "<" | ...

let rec pp e = match e with

Operation(e1, binop, e2) ->

| Subscript(e1, e2) ->

| Integer i ->

| Id id ->

CS 421 — Class 4, 1/24/13 — 14

Wrap-up

• Today we discussed:

• Defining ASTs

• Writing functions on ASTs by pattern-matching and tree traversal.

• We discussed it because:

• ASTs are the central data structure in a compiler.

• In the next two classes, we will:

• Talk about lexing

• Next 3 weeks: goal to convert programs to ASTs (while learning
OCaml)

• What to do now:

• MP2 — practice with abstract syntax of MiniJava

• Important: For next class, review DFAs and reg. expr.’s from CS 373

CS 421 — Class 4, 1/24/13 — 15

