
Lecture 3 — User-defined types

• In this lecture, you will learn to define trees in OCaml
(analogous to what you might do in Java or C++ by defining
a tree class). This will allow us to define abstract syntax

trees, which we will use extensively in this class. Abstract
syntax trees are the central data structure in a compiler.

• Specific topics:

• User-defined types in OCaml

• Defining trees (including ASTs)
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Type abbreviations in OCaml

• OCaml allows new names to be introduced as abbreviations
for types:

type t = te

• te is a type expression:

te = int | float | . . . | te * te * · · · * te

| te list | te → te

• Examples of type expressions:
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Defining new types

• OCaml allows you to create new types by writing:

type t = C1 [of te1] | . . . | Cn [of ten]

where C1, . . ., Cn are constructors (identifiers starting with
capital letters).

• The above declaration creates a new type, called t, and
automatically creates new functions that construct values
of type t:

• C1 : te1→ t

• . . .

• Cn : ten→ t
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Defining new types (cont.)

• For example, suppose we define this type:

type form_of_id = License of string

| SScard of int * int * int

| Student_id of string

• As soon as this is entered, you can enter:

# let myid = Student_id "123456789";;

val myid : form_of_id = Student_id "123456789"

# let hisid = SScard (123, 45, 6789);;

val hisid : form_of_id = SScard (123, 45, 6789)
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Defining new types (cont.)

• Think of values of type t as tuples combined with a tag —
a number between 1 and n — saying which kind of t-typed
value it is.

• Functions on values of type t can be defined using pattern-
matching:

let f x = match x with

C1(x, . . . , y) -> e1
| C2(x, . . . , y) -> e2
| . . .
| Cn(x, . . . , y) -> en
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Type definition example
type form_of_id = License of string

| SScard of int * int * int

| Student_id of string

let string_of_id id =

match id with

License s -> "license " ^ s

| SScard (x,y,z) -> "ssnum " ^ (string_of_int x)

^ (string_of_int y) ^ (string_of_int z)

| Student_id s -> "uin " ^ s
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Type definition exercise
• Given type

type shape = Circle of float

| Square of float

| Triangle of float * float * float

define function string of shape: shape→ string that prints
the shape (e.g. outputs “circle 4.3” for a circle):

let string_of_shape sh =

match sh with

Circle r ->

|

|
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Recursive type definitions

• In this type definition:

type t = C1 [of te1] | . . . | Cn [of ten]

the type expressions tei can contain t, making the type
declaration recursive. This allows for the definition of types
like lists and trees, e.g.

type mylist = Empty | Cons of int * mylist

let list1 = Cons (3, Cons (4, Empty))

• Ex: write the function sum : mylist → int.
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Defining trees

• Binary trees (with integer labels):

type bintree = Empty

| Node of int * bintree * bintree

let tree1 = Node (3,

Node (6, Empty, Empty),

Node (7, Empty, Empty));;

• Arbitrary trees (with integer labels):

type tree = Node of int * tree list

let smalltree = Node (3, [])

let bigtree = Node (3, [Node(...), Node(...), ...])
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Exercises: Functions on binary trees
type bintree = Empty

| Node of int * bintree * bintree

• Define isLeaf: bintree → bool

let isLeaf t = match t with

Empty ->

Node(i, t1, t2) ->

• Define sum: bintree → int

let sum t = match t with

Empty ->

Node(i, t1, t2) ->
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Polymorphic types

• We can define a type of binary trees with labels of any type
(but all the same type for any particular tree):

type ’a bintree = Empty

| Node of ’a * ’a bintree * ’a bintree

let x = Node("ben", Empty, Empty)

let y = Node(4.5, Empty, Empty)

• The sum function defined above still works, when applied to
a value of type int bintree.

• bintrees are homogeneous, e.g.

Node("ben", Node(4, Empty, Empty), Empty)

gives a type error.
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Mutually recursive types

• Sometimes two user-defined types are mutually interdepen-
dent: values of either type can contain values of the other
type. To define mutually-recursive types, give both type
declarations separated by the word and:

type ocamlexpr = Name of string | Intconst of int

| Let of definition * ocamlexpr

and definition = Def of string * ocamlexpr

• The above defines two types and four constructors:

• Name: string → ocamlexpr

• Intconst: int → ocamlexpr

• Let: definition * ocamlexpr → ocamlexpr

• Def: string * ocamlexpr → definition
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Abstract syntax

• Abstract syntax is a tree representation of the syntactic
structure of programs.

• The internal nodes of abstract syntax trees are labelled with
names, called abstract syntax operators; the leaf nodes are
labelled with strings, ints, etc.

• The specific trees used to represent programs in a given
language are determined by the person writing the language
processor (e.g. compiler).

• For example, this program in Java:

class C {

double f (double x) {

while (x > epsilon) x = x/2.0;

return x; } }
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Abstract syntax (cont.)

would be represented by a tree something like this:

• In OCaml, type definitions can be used to define abstract
syntax, and pattern-matching can be used to define functions
on abstract syntax trees.
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Ex: Abstract syntax of simple
expressions

• Here is an abstract syntax for simple arithmetic expressions
as an OCaml data type:

type expr = Int of int | Plus of expr*expr

| Times of expr*expr | Negate of expr

• For example:

• Plus(Int 3, Int 5) is abstract syntax for 3+5

• Plus(Int 3, Times(Int 5, Int 6)) is abstract syntax for
3+5*6 or 3+(5*6)

• Times(Plus(Int 3, Int 5), Int 6) is abstract syntax for
(3+5)*6
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Exercises using expr
type expr = Int of int | Plus of expr*expr

| Times of expr*expr | Negate of expr

• Show the abstract syntax tree for expression 4+-(7*-8+4):

• Give the OCaml expression of type expr for that tree:
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Exercises using expr (cont.)

• Write the function countPluses: expr → int, which counts
the number of Plus operations in an expr:

type expr = Int of int | Plus of expr*expr

| Times of expr*expr | Negate of expr

let rec countPluses e = match e with

Int i ->

| Plus(e1, e2) ->

| Times(e1, e2) ->

| Negate e ->
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Exercises using expr (cont.)

• Write the function eval: expr → int, which evaluates
its argument, e.g. eval (Times(Negate(Int 5), Int 6)) =
-30.

let rec eval e = match e with

Int i ->

| Plus(e1, e2) ->

| Times(e1, e2) ->

| Negate e ->
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Wrap-up

• Today we discussed:

• How to define new types in OCaml

• Especially trees

• Especially abstract syntax trees

• We discussed it because:

• ASTs are central to writing compilers

• In the next class, we will:

• Do more programming with ASTs

• What to do now:

• Just come back on Thursday...
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