Lecture 3 - User-defined types

- In this lecture, you will learn to define trees in OCaml (analogous to what you might do in Java or C++ by defining a tree class). This will allow us to define abstract syntax trees, which we will use extensively in this class. Abstract syntax trees are the central data structure in a compiler.
- Specific topics:
- User-defined types in OCaml
- Defining trees (including ASTs)

Type abbreviations in OCaml

OCaml allows new names to be introduced as abbreviations for types:

$$
\text { type } t=t e
$$

- te is a type expression:

$$
\begin{aligned}
t e= & \text { int } \mid \text { float }|\ldots| \text { te } * t e * \cdots * t e \\
& \mid \text { te list } \mid \text { te } \rightarrow \text { te }
\end{aligned}
$$

- Examples of type expressions:

Defining new types

OCaml allows you to create new types by writing:

$$
\text { type } t=C_{1}\left[\text { of } t e_{1}\right]|\ldots| C_{n}\left[\text { of } t e_{n}\right]
$$

where C_{1}, \ldots, C_{n} are constructors (identifiers starting with capital letters).

- The above declaration creates a new type, called t, and automatically creates new functions that construct values of type t :
- $C_{1}: t e_{1} \rightarrow t$
- $C_{n}: t e_{n} \rightarrow t$

Defining new types (cont.)

- For example, suppose we define this type:

```
type form_of_id = License of string
    | SScard of int * int * int
    | Student_id of string
```

As soon as this is entered, you can enter:

```
# let myid = Student_id "123456789";;
val myid : form_of_id = Student_id "123456789"
# let hisid = SScard (123, 45, 6789);;
val hisid : form_of_id = SScard (123, 45, 6789)
```


Defining new types (cont.)

- Think of values of type t as tuples combined with a tag a number between 1 and n - saying which kind of t-typed value it is.
- Functions on values of type t can be defined using patternmatching:

$$
\begin{aligned}
\text { let } \mathrm{f} \mathrm{x}= & \operatorname{match} \mathrm{x} \text { with } \\
& C_{1}(x, \ldots, y) \rightarrow e_{1} \\
& \mid C_{2}(x, \ldots, y) \rightarrow e_{2} \\
& \left\lvert\, \begin{array}{l}
n \\
\\
\\
C_{n}(x, \ldots, y) \rightarrow e_{n}
\end{array}\right.
\end{aligned}
$$

Type definition example

```
type form_of_id = License of string
                                    SScard of int * int * int
    | Student_id of string
```

let string_of_id id =
match id with
License s -> "license " ~ s
| SScard (x,y,z) -> "ssnum " - (string_of_int x)
- (string_of_int y) ~ (string_of_int z)
| Student_id s -> "uin " ~ s

Type definition exercise

- Given type

```
type shape = Circle of float
    | Square of float
    | Triangle of float * float * float
```

define function string_of_shape: shape \rightarrow string that prints the shape (e.g. outputs "circle 4.3" for a circle):
let string_of_shape sh = match sh with Circle r ->

Recursive type definitions

- In this type definition:

$$
\text { type } t=C_{1}\left[\text { of } t e_{1}\right]|\ldots| C_{n}\left[\text { of } t e_{n}\right]
$$

the type expressions $t e_{i}$ can contain t, making the type declaration recursive. This allows for the definition of types like lists and trees, e.g.
type mylist $=$ Empty | Cons of int * mylist let list1 = Cons (3, Cons (4, Empty))

Ex: write the function sum : mylist \rightarrow int.

Defining trees

- Binary trees (with integer labels):

```
type bintree = Empty
    | Node of int * bintree * bintree
```

let tree1 = Node (3,
Node (6, Empty, Empty),
Node (7, Empty, Empty));

- Arbitrary trees (with integer labels):

```
type tree = Node of int * tree list
```

let smalltree $=$ Node (3, [])
let bigtree $=\operatorname{Node~(3,~[Node(...),~Node(...),~...])~}$

Exercises: Functions on binary trees

```
type bintree = Empty
    | Node of int * bintree * bintree
```

Define isLeaf: bintree \rightarrow bool
let isLeaf $\mathrm{t}=$ match t with Empty ->

Node(i, t1, t2) ->

Define sum: bintree \rightarrow int
let sum $\mathrm{t}=$ match t with
Empty ->

Node(i, t1, t2) ->

Polymorphic types

- We can define a type of binary trees with labels of any type (but all the same type for any particular tree):

```
type 'a bintree = Empty
    | Node of 'a * 'a bintree * 'a bintree
```

let x = Node("ben", Empty, Empty)
let y $=$ Node(4.5, Empty, Empty)

- The sum function defined above still works, when applied to a value of type int bintree.
- bintrees are homogeneous, e.g.
Node("ben", Node(4, Empty, Empty), Empty)
gives a type error.

Mutually recursive types

- Sometimes two user-defined types are mutually interdependent: values of either type can contain values of the other type. To define mutually-recursive types, give both type declarations separated by the word and:

```
type ocamlexpr = Name of string | Intconst of int
    | Let of definition * ocamlexpr
and definition = Def of string * ocamlexpr
```

- The above defines two types and four constructors:
- Name: string \rightarrow ocamlexpr
- Intconst: int \rightarrow ocamlexpr
- Let: definition * ocamlexpr \rightarrow ocamlexpr
- Def: string * ocamlexpr \rightarrow definition

Abstract syntax

- Abstract syntax is a tree representation of the syntactic structure of programs.
- The internal nodes of abstract syntax trees are labelled with names, called abstract syntax operators; the leaf nodes are labelled with strings, ints, etc.
- The specific trees used to represent programs in a given language are determined by the person writing the language processor (e.g. compiler).
- For example, this program in Java:

```
class C {
    double f (double x) {
        while (x > epsilon) x = x/2.0;
        return x; } }
```


Abstract syntax (cont.)

would be represented by a tree something like this:

- In OCaml, type definitions can be used to define abstract syntax, and pattern-matching can be used to define functions on abstract syntax trees.

Ex: Abstract syntax of simple expressions

- Here is an abstract syntax for simple arithmetic expressions as an OCaml data type:

```
type expr = Int of int | Plus of expr*expr
    | Times of expr*expr | Negate of expr
```

- For example:
- Plus (Int 3, Int 5) is abstract syntax for $3+5$
- Plus(Int 3, Times(Int 5, Int 6)) is abstract syntax for $3+5 * 6$ or $3+(5 * 6)$
- Times(Plus(Int 3, Int 5), Int 6) is abstract syntax for $(3+5) * 6$

Exercises using expr

```
type expr = Int of int | Plus of expr*expr
    | Times of expr*expr | Negate of expr
```

- Show the abstract syntax tree for expression $4+-(7 *-8+4)$:
- Give the OCaml expression of type expr for that tree:

Exercises using expr (cont.)

- Write the function countPluses: expr \rightarrow int, which counts the number of Plus operations in an expr:

```
    type expr = Int of int | Plus of expr*expr
    | Times of expr*expr | Negate of expr
let rec countPluses e = match e with
    Int i ->
| Plus(e1, e2) ->
| Times(e1, e2) ->
| Negate e ->
```


Exercises using expr (cont.)

- Write the function eval: expr \rightarrow int, which evaluates its argument, e.g. eval (Times(Negate(Int 5), Int 6)) $=$ -30.
let rec eval e = match e with Int i ->
| Plus(e1, e2) ->
| Times(e1, e2) ->
| Negate e ->

Wrap-up

- Today we discussed:
- How to define new types in OCaml
- Especially trees
- Especially abstract syntax trees
- We discussed it because:
- ASTs are central to writing compilers
- In the next class, we will:
- Do more programming with ASTs
- What to do now:
- Just come back on Thursday...

