
Lecture 27 — Wrap-up

• Review of “big themes” of CS 421

• Next steps: follow-up courses and what they cover

• Open mic

CS 421 — Class 27, 4/30/13 — 1



From lecture 1: What you will learn
this semester

• How to implement programming languages

• Writing lexical analyzers and parsers

• Translating programs to machine language

• Implementing run-time systems

• How to write programs in a functional programming language

• How to formally define languages (including the definitions
of type rules and of program execution)

• Key differences between statically-typed languages (e.g. C,
Java) and dynamically-typed languages (Python, JavaScript)

• Plus a few other things...

CS 421 — Class 27, 4/30/13 — 2



Big themes of CS 421 — # 1

Processing structured data

• Lexing

• Parsing

• Constructing the abstract syntax tree, giving the “deep
structure” of the input

CS 421 — Class 27, 4/30/13 — 3



Big themes of CS 421 — # 2

Recursive traversal of abstract syntax tree

• Traverse AST to check types

• Traverse AST to evaluate expressions

• Traverse AST to compile code

CS 421 — Class 27, 4/30/13 — 4



Big themes of CS 421 — # 3

Defining languages precisely

• “SOS”-style rules for evaluation

• “SOS”-style rules for compilation

• “SOS”-style rules for type-checking/inference

• Rewrite rules used to define machine instruction set

• Proving programs correct using invariants

CS 421 — Class 27, 4/30/13 — 5



Big themes of CS 421 — # 4

Dynamically-typed vs. statically-typed languages

• Dynamically-typed languages

• More flexible; less safe

• Less efficient (tag-checking; boxing)

• Usually implemented by interpretation (easy)

• Statically-typed languages

• More efficient (no tag-checking)

• Usually implemented by compilation (more efficient, but
hard)

CS 421 — Class 27, 4/30/13 — 6



Big themes of CS 421 — # 5

Traditional vs. functional programming

• Traditional (imperative, object-oriented)

• Program by side-effect, i.e. assignment

• Better matches machine architecture

• Minimize data movement; don’t (necessarily) require
garbage collection; more efficient

• Functional

• Program by calculating values

• Recursion over lists and trees

• Functions as values

• More concise; may be less efficient

CS 421 — Class 27, 4/30/13 — 7



CS 421 — Class 27, 4/30/13 — 8



Next steps
• Theory — CS 422

• Type systems for more languages (e.g. functional languages
with class hierarchies)

• Proofs of correctness of type systems and compilers (relative
to SOS semantics)

• Semantics of concurrent/parallel languages

• Implementation — CS 426

• More on parsing: building LR parsers; error-correction

• Static analysis for optimization — e.g. given call e.f(. . .),
determine which f this is (if possible)

• Code generation for real machines

• Program verification — CS 476, 477

CS 421 — Class 27, 4/30/13 — 9



Outline for final

• Recursion on lists and trees; ASTs

• Methods of parsing and lexing

• Manual lexing; lexer generators

• Bottom-up parsing; parser actions and precedence decls

• Top-down parsing; LL(1); left-factoring

• Expression grammars

• Translation to abstract syntax

• Methods of execution

• Interpretation of AST (SOS rules)

• Compilation to native code (including machine-dependent
optimizations) (Compilation schemes)

CS 421 — Class 27, 4/30/13 — 10



• Compilation to abstract machine, followed by:

• Emulation of abstact machine, or

• Compilation to native code at run time (“just-in-time”)

• Run-time environments

• “Raw” machine — no automatic memory management; no
reflection; no standardized data layouts; OS “service calls”

• Virtual machine (e.g. Java virtual machine, Common Lan-
guage Runtime) — garbage collection; defined data layouts;
reflection; higher-level services — e.g. threads — provided
by run-time system

• Statically-typed vs. dynamically-typed langauges

• Tagged values

• Advantages/disadvantages of static typing

CS 421 — Class 27, 4/30/13 — 11



• Higher-order functions

• map, fold, curry, uncurry, etc.

• Combinator-style programming (e.g. parser combinators;
picture combinators)

• Interpretation via substitution model and environment
model (closures)

• Using higher-order functions in non-functional languages
(function objects)

• Lazy evaluation; the ⇓` rules

• Type systems for OCaml

• Monomorphic & polymorphic systems; value restriction

• Program verification — loop invariants

CS 421 — Class 27, 4/30/13 — 12



List of terms you should know (in no
particular order)

Curried vs. uncurried functions

Recursion fairy

Compilers

Front-end

Abstract syntax trees (ASTs)

Type-checking, symbol table

Back-end

Intermediate representation

Machine-independent optimization

Code generation (machine-dependent optimization)

Lexer

Token

CS 421 — Class 27, 4/30/13 — 13



DFA

lexer-generator, lex/ocamllex, regular expressions

Parsing

Parse trees

Sentences, sentential forms

Epsilon production

Ambiguous grammar

Nullable non-terminal

A-sentence, A-sentential form

Extended cfg

Stratified expression grammar

Shift-reduce parsing

Ocamlyacc precedence declarations

Recursive descent

LL(1), FIRST set, FOLLOW set

CS 421 — Class 27, 4/30/13 — 14



Left-recursive (or right-recursive) grammar

Left-factoring

Static vs. dynamic typing; tagged values; type errors vs. run-time errors

Proof system - judgment axiom, rule of inference

Structured operational semantics (SOS)

Side effects; ”threaded” store

Inheritance

Compilers

Interpretation vs. compilation

Virtual machine; bytecode; just-in-time compilation

Short-circuit evaluation

L-values vs r-values

V-tables

Substitution model vs. environment model; closure

Two-level store

CS 421 — Class 27, 4/30/13 — 15



Automatic memory management

Reachable cells; garbage cells; free list

Reference-counting

Mark-and-sweep garbage collection

Stop-and-copy garbage collection

Hoare logic; loop invariants; termination conditions; Hoare triples

Anonymous functions

Higher-order functions; map; fold right

Parser combinators; picture combinators (MP 11)

Monomorphic vs. polymorphic types; let-polymorphism

Type checking vs. type inference

Type scheme; generalization and instantiation

Ocaml references; the value restriction

Lazy evaluation; lambda calculus; beta-reduction

Function objects

CS 421 — Class 27, 4/30/13 — 16


