
Lecture 25 — Lazy evaluation

• A small change in the evaluation rules of OCaml makes for
a language that is in some ways more powerful. The change
makes evaluation “lazy;” lazy, or “delayed,” evaluation is
the basis of the popular functional language Haskell. It also
bring the language closer to the grand-daddy of functional
languages, the λ-calculus, known for it extreme simplicity.

• We will discuss

• Lazy evaluation

• How to remove features without losing power

CS 421 — Class 25, 4/23/12 — 1

MiniOCaml with lazy evaluation
• In this lecture, we explore the impact of making one small

change in the rules for evaluation via substitution:
(Const) Const x ⇓` Const x (Fun) Fun(a,e) ⇓` Fun(a,e)

(Rec) Rec(f ,Fun(a,e)) ⇓` Fun(a,e[Rec(f ,Fun(a,e))/f]

(δ) e op e′ ⇓` v OP v′

e ⇓` v
e′ ⇓` v′

(App) e e′ ⇓` v
e ⇓` Fun(a, e′′)
e′′[e′/a] ⇓` v

(If) If(e1, e2, e3) ⇓` v
e1 ⇓` True
e2 ⇓` v

(If) If(e1, e2, e3) ⇓` v
e1 ⇓` False
e3 ⇓` v

(Let) Let(a, e1, e2) ⇓` v
e2[e1/a] ⇓` v

(Note the ` subscript.)

CS 421 — Class 25, 4/23/12 — 2

Lazy evaluation

• ⇓` is called lazy evaluation because the evaluation of argu-
ments to functions is delayed until the last moment:

(fun x -> x+1) (3+4) ⇓ 8

fun x -> x+1 ⇓ fun x -> x+1

3+4 ⇓ 7

3 ⇓ 3

4 ⇓ 4

7+1 ⇓ 8

7 ⇓ 7

1 ⇓ 1

(fun x -> x+1) (3+4) ⇓` 8
fun x -> x+1 ⇓` fun x -> x+1

(3+4)+1 ⇓` 8
3+4 ⇓` 7

3 ⇓` 3
4 ⇓` 4

1 ⇓` 1

CS 421 — Class 25, 4/23/12 — 3

Lazy evaluation (cont.)

• Since closed expressions have the same value regardless of
when they are evaluated, ⇓ and ⇓` almost always produce
the same result. But there are exceptions:

(fun x -> 3) (4/0) ⇓

(fun x -> 3) (4/0) ⇓`

CS 421 — Class 25, 4/23/12 — 4

Lazy evaluation (cont.)

• Another exception: let rec f x = f x in (fun x -> 3)(f

0).

• To save writing, let φ = Rec(f, fun x -> f x):

let f = φ in (fun x->3)(f 0) ⇓

CS 421 — Class 25, 4/23/12 — 5

Lazy evaluation (cont.)

let f = φ in (fun x->3)(f 0) ⇓`

CS 421 — Class 25, 4/23/12 — 6

Removing features

• To show the power of abstractions and applications alone,
especially with lazy evaluation, we will begin to remove all
features that are just “syntactic sugar.”

• This language — abstraction and application and nothing
else, with lazy evaluation — is the language called λ-calculus.

• We will eliminate features in this order:

• Lists

• If and boolean values

• Integers

• Recursion (which is the most surprising one of all)

CS 421 — Class 25, 4/23/12 — 7

Removing features: lists
• Need to define a representation (type list = something) and opera-

tions:

• nil : list = ...

• cons (h:value) (t:list) : list = ...

• isempty (l:list) : bool = ...

• hd (l:list) : value = ...

• tl (l:list) : list = ...

These must behave like lists, e.g. hd (cons 3 ..) = 3.

• Here is a representation using only functions (where value can be any
value, including bool — we’re assuming dynamic type-checking):

• type list = (value -> list -> value -> value) -> value

• nil : list = fun f -> f 0 0 true

• cons (h:value) (t:list) : list = fun f -> f h t false

• isempty (l:list) : bool = l (fun h t n -> n)

• hd (l:list) : value = l (fun h t n -> h)

• tl (l:list) : list = l (fun h t n -> t)

CS 421 — Class 25, 4/23/12 — 8

Removing features: lists (cont.)
hd (cons 3 nil) ⇓ 3

CS 421 — Class 25, 4/23/12 — 9

Lazy lists
• If we are using lazy evaluation, the previous definitions of list

operations aren’t quite the same as our previous definitions.
They correspond to “lazy lists.” If we were to make lazy lists
a built-in type, we would change the SOS rules like this:
• Expressions of the form e::e′ and [] are values. ([e1; e2;

...; en] is just syntactic sugar for e1::e2::...::en::[].)

• Rules for list operations:

(Cons) e::e′ ⇓` e::e′ (Nil) [] ⇓` []

(Head) hd e ⇓` v
e ⇓` e′ :: e′′
e′ ⇓` v

(Tail) tl e ⇓` v
e ⇓` e′ :: e′′
e′′ ⇓` v

• (Note: the same definitions would give the ordinary, “strict”
list operations if the underlying language were not lazy.)

CS 421 — Class 25, 4/23/12 — 10

Lazy lists (cont.)

• Lazy lists are really useful. For example, they allow us to
build infinite lists:

let rec ints = fun i -> i :: ints (i+1) in hd (tl (tl (ints 0)))

• Infinite lists are not just a curiosity. They allow some
computations to be written in a more modular way.

CS 421 — Class 25, 4/23/12 — 11

Lazy lists (cont.)

• E.g Newton’s method:

To find sqrt(x), generate sequence: < ai >, where a0 is
arbitrary, and ai+1 = ai+x/ai

2 . Then choose first ai s.t.
|ai − ai−1| < ε.

• This can be programmed elegantly by creating the infinite

list < ai >, and then iterating over it:

let next x a = (a+x/a)/2

let rec repeat f a = a :: repeat f (f a)

let candidates x = repeat (next x) (x/2);; (* list of candidates *)

let find test (a1::a2::as) = if test a1 a2 then a2

else find test (a2::as)

let withineps eps = fun a b -> (abs (a-b)) < eps

let sqrt x eps = find (withineps eps) candidates

CS 421 — Class 25, 4/23/12 — 12

Removing features: if, and boolean
values

• With lazy evaluation, can define if. This is impossible in an
eager evaluation language like OCaml because all functions
defined using fun are strict.

let true = fun x y -> x

let false = fun x y -> y

let if a b c = a b c

let lessthan i j = if i<j then true else false

let and b b’ = if b then b’ else true (or just, b b’ true)

if (lessthan 3 2) 5 10 ⇓` 10

CS 421 — Class 25, 4/23/12 — 13

Where we are...

• We have shown that lists, and if, as well as boolean values,
are syntactic sugar.

• This eliminates the need for boolean constants and lists,
and the δ rules for them.

• Character can be regarded as integers, and Strings as lists
of characters, so we will eliminate both as syntactic sugar.

• We already know that let is syntactic sugar.

• We are left with integers and integer operations, and recur-
sion.

CS 421 — Class 25, 4/23/12 — 14

Removing features: integers

• Alonzo Church invented λ-calculus. On the way to proving
that it is Turing-complete, he produced a representation of
integers in terms of functions, which has been given the name
“Church numerals.”

• As usual, we need a representation of integers (type intgr

= something), and then definitions of constants and func-
tions:

• let zero : intgr = ...

• let one : intgr = ...

• let plus (i1:intgr) (i2:intgr) : intgr = ...

• let lessthan (i1:intgr) (i2:intgr) : bool = ...

• ... and so on

CS 421 — Class 25, 4/23/12 — 15

Church numerals

• These have to act in “integer-like” ways, e.g. lessthan

i (plus i one) must be true, equals (mult three four)

(mult two six) must be true, etc.

• Church numerals represent numbers by lambda terms:

type intgr = (’a -> ’a) -> (’a -> ’a)

zero = fun f -> fun x -> x

one = fun f -> fun x -> f x

two = fun f -> fun x -> f (f x)

three = fun f -> fun x -> f (f (f x))

CS 421 — Class 25, 4/23/12 — 16

Church numerals (cont.)

• Plus and times are easy to define:

let plus m n = fun f -> fun x -> (m f (n f x)

let mult m n = fun f -> fun x -> (m (n f)) x

CS 421 — Class 25, 4/23/12 — 17

Removing features: let rec

• Implementing recursion without let rec is the trickiest part.
It uses the so-called “paradoxical combinator,” a.k.a. the “Y
combinator”:

let W = fun F -> fun f -> F (f f)

let Y = fun F -> (W F)(W F)

• For recursive function let rec f = fun x -> ..., instead
write let f = Y (fun f -> fun x ->...).

let fac = Y (fun fac -> fun x -> if x=0 then 1 else x * fac (x-1))

• We leave it as an exercise to show that, e.g., fac 3 evaluates
to 6. Note that there is no explicit recursion used here: each
name defined (W, Y, and fac) refers only to names defined
previously, never to themselves.

CS 421 — Class 25, 4/23/12 — 18

λ-calculus

• The λ-calculus is a language with only three types of expres-
sions:

expr = variable | expr expr | fun variable → expr

and two evaluation rules:

(Fun) fun a → e ⇓` fun a → e (App) e e′ ⇓` v
e ⇓` fun a → e′′

e′′[e′/a] ⇓` v

• Lacking only features that are syntactic sugar, and the ability
to display values in a “natural” form, λ-calculus is as powerful
as (dynamically-typed, lazy) OCaml.

CS 421 — Class 25, 4/23/12 — 19

Aside: β-reduction

• Here is an even simpler semantics for λ-calculus:

• Given an expression, apply the following transformation
wherever it occurs:
(β-reduction) (fun x -> e) e′ →β e[e′/x]

• Applying β may produce new places where β can be applied.
If it is possible to reduce the term to a value by applying
β-reduction repeatedly, then that is the value of the term.

• There may be many ways to apply β, which could result in
different values; some might never terminate. The computa-
tion rule says if any sequence of β’s results in a value, that
is the value of the term. Furthermore, a famous theorem
(Church-Rosser) says that all values of a term obtained this
way are in a certain sense equivalent.

CS 421 — Class 25, 4/23/12 — 20

Haskell

• OCaml uses non-lazy, or “eager,” evaluation (⇓)

• Haskell is a popular functional language that uses lazy eval-
uation (⇓`).

• Haskell is statically-typed and has a syntax somewhat like
OCaml, including pattern-matching.

• As an example, this remarkable definition of the list of
Fibonacci numbers works if you just follow our rules for lazy
lists, where map and zip have exactly the same definitions as
in OCaml:

fib = 1 : 2 : map (+) (zip fib (tail fib))

CS 421 — Class 25, 4/23/12 — 21

Implementation of lazy languages

• Using the substitution model, you need to change just the
rules shown (App and Let).

• Real implementations are based on the environment model.
SOS rules for lazy evaluation in the environment model are a
little tricky, for this reason: If we want to evaluate arguments
later, then we need to remember the environment in which
they were supposed to be evaluated.

• Solution: Arguments are stored in the environment as
closure-like things called thunks — pairs containing the
expression and the environment.

• Evaluating a variable x: x is bound to a thunk < e, ρ >;
evaluate e in ρ, and replace the binding of x by this value.

CS 421 — Class 25, 4/23/12 — 22

Wrap-up

• Today we discussed lazy evaluation, and showed how higher-
order functions with lazy evaluation provides tremendous
power. The λ-calculus, a functional language simplified to
the bare bones, is as powerful, ignoring syntactic sugar,
as OCaml. Haskell is a popular statically-typed functional
language that uses lazy evaluation.

• We discussed this both to introduce you to Haskell, and to
demonstrate the real power of higher-order functions.

• What to do now:

• Um, nothing much. (If you’re ambitious, make the small
change in your MP9 solution and try these examples!)

CS 421 — Class 25, 4/23/12 — 23

