
Lecture 24 — OCaml type-checking,
part 3; given by Susannah Johnson

• Imperative features

• Problems with polymorphism

• The value restriction

CS 421 — Class 25, 4/18/13 — 1

Imperative operations in OCaml

• OCaml variables are not assignable — once a variable gets
its value, that value does not change.

• However, there is a type for pointer-like values that are
assignable. These are called references.

• The type of pointers to values of type τ is “τ ref”.

• Operations on ref types are:

ref : ∀τ.τ → τ ref

! : ∀τ.τ ref → τ

:= : ∀τ.τ ref * τ → unit

; : ∀τ. unit * τ → τ

CS 421 — Class 25, 4/18/13 — 2

Imperative operations in OCaml

• With ref types, OCaml users can use ordinary imperative
functions. OCaml also has a while loop:

let r = ref 1

in while !r < 11 do

print_int !r ;

print_string " " ;

r := !r+1

done ;;

CS 421 — Class 25, 4/18/13 — 3

Using ref values in higher-order
functions

• The combination of higher-order functions and imperative
values allows for some interesting examples. This function
produces a random number generator, generating a number
between 1 and 10 each time it’s called:

let rand i = let r = ref i

in fun () -> (r := (!r) * 7 mod 11; !r);;

let gen = rand 1;;

gen();;

gen();;

CS 421 — Class 25, 4/18/13 — 4

Semantics of imperative operations

• The expression above cannot be understood using the sub-
stitution model. It requires the environment model.

• The value of !r changes over time, so any substitution of a
static value for !r would be incorrect

• Further, the location referenced by r could also be changed,
so substituting a static (location) value for r would be
incorrect, as well!

• More generally, since this allows aliasing, just like MiniJava,
it requires a two-level state.

• We place values that have been referenced on the heap

CS 421 — Class 25, 4/18/13 — 5

Evaluation rules
(Ref) ref e, (ρ, ω) ⇓

(Deref) !e, (ρ, ω) ⇓

CS 421 — Class 25, 4/18/13 — 6

Evaluation rules (cont.)
(Assign) e1 := e2, (ρ, ω) ⇓

(Seq) e1; e2, (ρ, ω) ⇓

CS 421 — Class 25, 4/18/13 — 7

Explicit polymorphic type system

• Γ is a map from variables to type schemes. τ , τ ′, τ ′′ are
types.

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)

(Γ(a) a type)

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e ⊕ e′ : τ ′′

Γ ` e : τ
Γ ` e′ : τ ′

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(True) Γ ` true : bool

(False) Γ ` false : bool

(PolyVar) Γ ` a[τ] : τ
where τ ≤ Γ(a)

(Γ(a) a type scheme)

(Let) Γ ` let a:τ = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

CS 421 — Class 25, 4/18/13 — 8

Type-checking references

• How about references? How should they be typed?

CS 421 — Class 25, 4/18/13 — 9

Polymorphism and references

• Prove the following judgment:

∅ ` let i = fun x -> x

in let fp = ref i in (fp := not; (!fp) 5) : int

CS 421 — Class 25, 4/18/13 — 10

Polymorphism and references

• The above term type-checks in the polymorphic type system,
but it has a serious run-time type error: it applies a boolean
function (not) to an integer argument.

• Treating imperative operations as having normal polymorphic
types causes a problem. How can the type system be fixed?

• Easiest method: do not generalize reference expressions at
all, i.e. make all reference types monomorphic.

• Method used by OCaml: “value restriction”

CS 421 — Class 25, 4/18/13 — 11

The value restriction

• It turns out that the problem typified by the example above
can be eliminated if the let-bound expression cannot create
references when it is evaluated.

• However, it is difficult to determine statically whether an
expression will create a reference.

• So the rule used is (roughly): a let-bound expression can be
polymorphic only if it does no computation.

• This sounds worse than it is. Recall the notion of a “value”
from the substitution model.

• Value restriction: The type of an expression in a let can
be generalized only if the expression is a syntactic value — a
constant or abstraction (function definition).

CS 421 — Class 25, 4/18/13 — 12

The value restriction (cont.)
Which of the following are disallowed under value restriction?

let f = List.map (fun x->x);;

let f = fun lis -> List.map (fun x->x) lis;;

let f = ref (fun x -> x + 2);;

let f = ref (fun x -> x);;

let f = ref (fun x -> 2);;

CS 421 — Class 25, 4/18/13 — 13

The value restriction (cont.)

• The good:

• Polymorphic expressions almost always define functions.
This means the value restriction is not that severe, because

let x = e e′ in e′′

can just be changed to

let x = fun z -> (e e′)z in e′′.

• On the other hand, the example above cannot be changed
in this way (since ref i is not a function). This is good —
that expression shouldn’t type-check!

CS 421 — Class 25, 4/18/13 — 14

The value restriction (cont.)

• The bad:

• The value restriction can be very annoying, especially when
using a programming style that uses use of higher-order
functions.

• For example, this is illegal:

let f = List.map (fun x->x)

in (f [1], f [true]);;

even though this is legal:

let f = fun lis -> List.map (fun x->x) lis

in (f [1], f [true]);;

CS 421 — Class 25, 4/18/13 — 15

The value restriction (cont.)

• OCaml uses a modified version of the value restriction that
is a little less restrictive. (It is too complicated to explain
here.) It makes it legal to write let f = List.map (fun x->x);;.
But note that we lose polymorphic behavior in this case:

let mapid = List.map (fun x -> x);;

val mapid : ’_a list -> ’_a list = <fun>

mapid [1;2];;

- : int list = [1; 2]

mapid [true;false];;

Characters 7-11:

mapid [true;false];;

This expression has type bool but is here used with type int

CS 421 — Class 25, 4/18/13 — 16

Type-checking summary

• Two major trends in programming in recent years are the in-
creasing use of dynamically-typed languages (e.g. JavaScript,
Python), and the increasing sophistication of static type sys-
tems (OCaml, Scala, Java generics, C++).

• Dynamically-typed languages are (1) more flexible, and (2)
easier to implement.

• Statically-typed languages are (1) safer to use (since the
types provide a form of “sanity check”), and (2) more
efficient.

• Continuing research is attempting to combine the advantages
of these two classes of languages in a single language, or at
least simplify the transition from one to the other. But for
now, there is still a wide gulf between these two worlds.

CS 421 — Class 25, 4/18/13 — 17

Wrap-up

• Today we discussed:

• Imperative features of OCaml

• Value restriction

• We discussed it because:

• References introduce a level of indirection that makes naive type-
checking unsafe

• Value restriction is an examples of how we cannot entirely “fix” type-
checking to accept every (otherwise correct) program

• What to do now:

• MP12

CS 421 — Class 25, 4/18/13 — 18

