
Lecture 23 — OCaml type-checking,
part 2

• We will look at the actual OCaml type system, which is
polymorphic, in the same way as we did for the monomorphic
version. We will define explicitly- and implicitly-typed versions
(OCamlep and OCamlip), and discuss type-checking and type
inference.

• It turns out that the key to polymorphism in OCaml is the
treatment of let.

CS 421 — Class 23, 4/16/13 — 1

Monomorphic type system and
OCaml

• In lecture 22, we saw several untypable terms:

fun f -> f f

fun f -> fun g -> g (f 1) (f true)

(fun f -> f f)(fun i -> i)

let f = fun i -> i in f f

• This is consistent with actual OCaml, except for one case...

CS 421 — Class 23, 4/16/13 — 2

Monomorphic type system and
OCaml

fun f -> f f;;

Characters 11-12:

fun f -> f f;;

This expression has type ’a -> ’b but is here used with type ’a

fun f -> fun g -> g (f 1) (f true);;

Characters 29-33:

fun f -> fun g -> g (f 1) (f true);;

^^^^

This expression has type bool but is here used with type int

(fun f -> f f)(fun i -> i);;

Characters 12-13:

(fun f -> f f)(fun i -> i);;

This expression has type ’a -> ’b but is here used with type ’a

let f = fun i -> i in f f;;

- : ’_a -> ’_a = <fun>

CS 421 — Class 23, 4/16/13 — 3

let polymorphism

• The expression (fun f -> f f)(fun i -> i) is not typable in
OCaml. However, the following “equivalent” term is typable:

let f = fun i -> i in f f

• In OCaml, let expressions are treated as if their type rule
were:

(Let (proposed)) Γ ` let x = e in e′ : τ
Γ ` e′[e/x] : τ

• Then, we obtain the above judgement because we can type
this term (in the monomorphic system):

(fun i -> i)(fun i -> i)

CS 421 — Class 23, 4/16/13 — 4

let polymorphism (cont.)

• Note that there is no way we can use an analogous rule
with abstractions, because we don’t normally know statically

what their argument is.

• The rule just given works well, but it would be very expensive
to implement. Instead, we will assign polymorphic types
to let-bound variables, and type-check to make sure they are
used consistently.

CS 421 — Class 23, 4/16/13 — 5

Polymorphic types

• We now add quantified variables to types. These are type
variables that can be replaced by any (monomorphic) type.
E.g.

• hd: ∀α.α list → α

• map: ∀α, β.(α→ β)→ α list → β list

• nth: ∀α.α list → int → α

• A type with variables quantified (not necessarily all of its
variables) is called a type scheme. (Normal types are a
subset of type schemes.)

CS 421 — Class 23, 4/16/13 — 6

Explicitly-typed, polymorphic OCaml
(Ocamlep)

• We declare types of variables bound in let and fun expres-
sions:

• let-bound variables’ types can contain new type variables
(which we should think of as being quantified);

• fun-bound variables’ types can only contain type vari-

ables if those were introduced by an enclosing let ex-

pression.

• Variables introduced in let expressions are polymorphic.
When they are used, we have to say what specific type
they are used at; this can be a monotype, or it can contain
variables that are used in the types of enclosing declarations.

CS 421 — Class 23, 4/16/13 — 7

Ocamlep
Concrete syntax:

typeterm → int | bool | typeterm -> typeterm | id

exp → int | true | false | id | exp exp | fun id : typeterm -> exp
| let id : typeterm = exp in exp | id[typeterm]

Abstract syntax:

type typeterm = IntType | BoolType | Typevar of string

| FunType of typeterm * typeterm

type exp = Int of int | True | False | Var of string

| Operation of exp * binary_operation * exp

| App of exp * exp | Fun of string * typeterm * exp

| Let of id * typeterm * exp * exp

| Polyvar of string * typeterm

CS 421 — Class 23, 4/16/13 — 8

Ocamlep examples
Ocaml: let id = fun x -> x in id 4

Ocamlep:

let id:(alpha->alpha) = fun x:alpha -> x

in id[int->int] 4

OCaml:

let g = fun a -> fun b -> a

in let id = fun x -> x

in g (id 4) (id true)

Ocamlep:

let g:alpha->beta->alpha = fun a:alpha -> fun b:beta -> a

in let id:(gamma->gamma) = fun x:gamma -> x

in g[int->(bool->int)] (id[int->int] 4) (id[bool->bool] true)

CS 421 — Class 23, 4/16/13 — 9

Ocamlep examples (cont.)
OCaml: let incr = fun i:int -> i+1

in let double = fun g -> fun x -> g (g x)

in double incr 4

Ocamlep:

let incr:(int->int) = fun i:int -> i+1

in let double:((alpha->alpha)->(alpha->alpha)) =

fun g:(alpha->alpha) -> fun x:alpha -> g (g x)

in double[(int->int)->(int->int)] incr 4

OCaml: let sub = fun i -> fun j -> i-j

in let reverse = fun f = fun x -> fun y -> f y x

in reverse sub 3 5

Ocamlep:

let sub:(int->int->int) = fun i:int -> fun j:int -> i-j

in let reverse:((alpha->(beta->gamma))->(beta->(alpha->gamma))) =

fun f:(alpha->(beta->gamma)) =

fun x:alpha -> fun y:alpha -> f y x

in reverse[(int->(int->int))->(int->(int->int))] sub 3 5

CS 421 — Class 23, 4/16/13 — 10

Explicitly-typed, polymorphic OCaml
exercises

(let id = fun x -> x in id id) 5

let g = fun a -> fun b -> a

in let incr = fun x -> x+1 in g incr (incr 5)

let apply = fun g -> fun x -> g x

in apply (fun x -> x) 3

CS 421 — Class 23, 4/16/13 — 11

Explicit polymorphic type system

• Γ is a map from variables to type schemes. τ , τ ′, τ ′′ are
types.

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)

(Γ(a) a type)

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e ⊕ e′ : τ ′′

Γ ` e : τ
Γ ` e′ : τ ′

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(True) Γ ` true : bool

(False) Γ ` false : bool

(PolyVar) Γ ` a[τ] : τ
where τ ≤ Γ(a)

(Γ(a) a type scheme)

(Let) Γ ` let a:τ = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

CS 421 — Class 23, 4/16/13 — 12

Generalization and instantiation

• In the PolyVar rule, we write: τ ≤ Γ(a). This means τ is
an instance of Γ(a), i.e. obtained from Γ(a) by replacing its
quantified variables by types. E.g.

• int→int ≤ ∀α.α→ α

• int→int ≤ ∀α.int→ α

• int→int ≤ int→int

• int→ β ≤ ∀α.α→ β

• int→ γ ≤ ∀α.α→ γ

• int→ β 6≤ ∀α.α→ γ

Note: nothing in the type scheme can change except the
replacement of bound type variables.

CS 421 — Class 23, 4/16/13 — 13

Generalization and instantiation
(cont.)

• GENΓ(τ) is usually just τ with all its variable generalized,
e.g. GENΓ(α→ (β → int)) is usually ∀α, β. α→ (β → int)

• We will see a more accurate definition later.

CS 421 — Class 23, 4/16/13 — 14

Example
let id:(alpha->alpha) = fun x:alpha -> x

in id[int->int] 4

CS 421 — Class 23, 4/16/13 — 15

Example
let g:alpha->beta->alpha = fun a:alpha -> fun b:beta -> a

in let id:(gamma->gamma) = fun x:gamma -> x

in g[int->bool->int] (id[int->int] 4) (id[bool->bool] true)

CS 421 — Class 23, 4/16/13 — 16

Example
let g:(int->beta)->beta = fun f:(int->beta) -> f 0

in g[(int->bool)->bool] (fun x:int -> x>0)

CS 421 — Class 23, 4/16/13 — 17

Type-checking (MP 12)

• As with the explicitly-typed system from lecture 22, type-
checking (that is, checking whether the type declarations in
an expression in the explicitly-typed system are valid) is fairly
simple.

• The algorithm is nearly identical to the one from lecture 22,
except for handling let expressions and polymorphic variables.
Γ is, as above, a map from program variables to type schemes.

CS 421 — Class 23, 4/16/13 — 18

Type-checking (MP 12)

tcheck t Γ = match t with
i → int
| true → bool
| false → bool
| x → Γ x (non-polymorphic x)
| fun x : τ -> e → (τ → tcheck e Γ[τ/x])
| e1 e2 → let τ1 = tcheck e1 Γ

and τ2 = tcheck e2 Γ
in if τ1 = τ ′1 → τ ′′1 and τ2 = τ ′1

then τ ′′1 else error
| x[τ] → τ , if τ ≤ Γ(x) (polymorphic x)
| let x : τ = e in e′ → if τ = tcheck e Γ

then tcheck e′ Γ[GENΓ(τ)/x]
else type error

CS 421 — Class 23, 4/16/13 — 19

Technicality #1: Generalization

• Ex: Prove this judgment (where incr has type int→int):

∅ ` let f:(a->a) = fun x:a ->

let g:((a->b)->b) = fun y:(a->b) -> y x

in g[(int->int)->int] incr

in f[bool->bool] true : bool

CS 421 — Class 23, 4/16/13 — 20

Technicality #1: Generalization
(cont.)

• One way to look at the problem is that we should not
generalize type variables that were introduced in enclosing
lets — we should just generalize the ones added in this let.

• So, GENΓ(τ) is actually defined as: τ with all variables
generalized except those that occur (free) in Γ.

• How does this make our proof of the previous type judgment
wrong?

CS 421 — Class 23, 4/16/13 — 21

Implicitly-typed, polymorphic OCaml
(aka Ocamlip) (aka OCaml)

• As with the monomorphically-typed system, we can obtain
an implicitly-typed polymorphic system easily: just remove all
the type declarations. The typing rules remain the same.

Explicit Implicit

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(Fun) Γ ` fun a -> e : τ → τ ′

Γ[a:τ] ` e : τ ′

(Let) Γ ` let a:τ = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

(Let) Γ ` let a = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

(PolyVar) Γ ` a[τ] : τ
where τ ≤ Γ(a)

(Γ(a) a type scheme)

(PolyVar) Γ ` a : τ
where τ ≤ Γ(a)

(Γ(a) a type scheme)

CS 421 — Class 23, 4/16/13 — 22

Type inference

• As with the monomorphic system, we an view type inference
either as finding a proof in the type system for Ocamlip, or
as finding a way to fill in variable declarations so as to obtain
a proof in the type system for Ocamlep.

• Again, type inference is a matter of writing down all the
constraints on the types of the variables that are implied
by the use of the variables in the expression. If they are
contradictory, then there is a type error.

• Major technicality: need to take into account that names
introduced by let are polymorphic. E.g. f f does not
necessarily represent a contradiction, as in the monomorphic
system.

CS 421 — Class 23, 4/16/13 — 23

Type inference

• Robin Milner presented a (relatively) efficient algorithm for
type inference, called “algorithm W.”

• Algorithm W is actually exponential, because the type of a
term can be exponential in its size. Here is an example:

let compose f g = fun x -> f (g x);;

let pair x = (x, x);;

val pair : ’a -> ’a * ’a = <fun>

compose pair pair;;

- : ’a -> (’a * ’a) * (’a * ’a) = <fun>

compose pair (compose pair pair);;

- : ’a -> ((’a * ’a) * (’a * ’a)) * ((’a * ’a) * (’a * ’a)) = <fun>

• In practice, as you know, type inference in OCaml is quite
efficient.

CS 421 — Class 23, 4/16/13 — 24

Wrap-up

• Today we discussed polymorphically-typed OCaml, both with
and without explicit type declarations. The key difference
from the monomorphic system is that let introduces quanti-
fied types, which may be instantiated differently at each use
within the let.

• In the next class, we will discuss side effecting operations in
OCaml and the notion of ref types. We are discussing this
now because it has a major impact on the type system.

CS 421 — Class 23, 4/16/13 — 25

