Lecture 22 — OCaml type-check

® In the next three lectures, will discuss type-check
OCaml (which is much more interesting than type-ch
in Java). The three lectures will concern: non-polyn
OCaml; polymorphic OCaml; polymorphic OCaml wit
effects.

® Today we will cover monomorphic OCamil:

Typing rules

®
¢ Examples

® Type-checking algorithm
°

Type inference

€S 421 — Class 22, 4/11/13 — 1

Monomorphic OCaml

® Today we will discuss two simplified versions of OCarnr

¢ OCaml,.,, — explicit type declarations; monomorphic
(no type variables). E.g.
fun x:int -> fun f:(int->string) -> f
¢ OCaml;,, — no type declarations; no polymorphism.
fun x —-> fun £ —-> £ x

@® For us, the interesting question about expressions in OC
is this: can we infer the types of variables — i.e. trai
the expression to an expression in OCaml.,,,?

€S 421 — Class 22, 4/11/13 — 2

OCaml,_,,

type type = IntType | BoolType | FunType of type * type

type exp = Int of int | True | False | Var of string
| App of exp * exp | Fun of string * type * exp
| Operation of exp * binary_ operation #* exp

| Let of string * exp * exp

Type rules (where I' is a mapping from variables to types, and each binary op:

is assumed to have a given type 7 — 7' — T7):

(Const) TFEInti: int (Var) 'k a: I'(a)
(Fun) PkFfunmar >e: 7 — 7" (5) Frrede "
Pla:r] - e: 7 Fe:r
e : 7
(App) PFee : 7’ (Let) I' - let a:7=e in €’
FFe: ™ — 7 I'e: 7
e :r Pla:r] - e : 7

€S 421 — Class 22, 4/11/13 — 3

Examples

D fun x:int —-> x+1 : int — int
G Cyintd Foya1s it
GLrind] F ¥ it
0[{]:\{'] F |t

D fun f£:(int->int) -> £ 3 : (int— int) — int

fp f-('- TS RLY A W e s AL
OS2\ v £ vk mr
G 2N 30 m

€S 421 — Class 22, 4/11/13 — 4

Examples (cont.)

D+ fun f:(int->int) -> fun x:int —-> f (f x)
: (int— int) — (int— int)

A Le A~ fy = ((n) g > ik
D IS ind ik b £ ()
0) (}..A-m\ quu: = ek

(DC’)L ¥ x At
D) X natiar
OC-) &= int

€S 421 — Class 22, 4/11/13 — 5

Type-correctness theorem

® As we mentioned w.r.t. the MiniJava type system, we
principle prove that this type system is “correct” — t
it is consistent with the operational semantics of MiniC

Theorem If) - e: 7, then if e || v, v is a value of type 7 (i
= int, then v =Inti,if7r =---— ---, then v = fun x
etc.). Furthermore, although it is possible that there |
such that e |} v (since the evaluation of ¢ may not term
no sub-evaluation produces a type error.

€S 421 — Class 22, 4/11/13 — 6

Type-checking algorithm

® Given an explicitly-typed term ¢, tcheck determines w
t is type-correct and what its correct type is. 1 is
environment mapping program variables to types.

tcheck { I' = match ¢ with
7z — iIint

true — bool

false — bool

r — ' x
fun z : 7 -> e — (7 — tcheck e I'[7/z])
e, e — let ™ = tcheck e; I

and > = tcheck e> I'

inif =7 — 7 and = = 77

then 7/’ else error

€S 421 — Class 22, 4/11/13 — 7

Implicitly-typed monomorphic
OCaml (OCaml,;,,)

® If we omit the declarations of lambda-bound variable
language is more similar to OCaml.

® Can view this in two ways (that turn out to be equiv
The first is:

¢ Given an expression ¢ in OCaml;,,, can view it
incomplete expression in OCaml,.,,,, and ask: can w
type declarations to all variables so that this expressic
checks? This is called type inference.

® If it is impossible to fill in type declarations in ¢, the
said to be untypable. (Note that there may be mor
one way to fill in types.)

€S 421 — Class 22, 4/11/13 — 8

Examples of typable and untypa
terms in OCaml OCaml,,,

fuvn £: __ -> fun x:__ __ ____ -> £ (£ x)
fwvn £:___ -> £ £
fun £f: -> fun g:_____ ___ -> g (£ 1) (£ true)

€S 421 — Class 22, 4/11/13 — 9

OCaml,;,,, type system

® The other way to look at OCaml,;,,, is as its own lar
with its own type system. In fact, its type system is id
to the type system of OCaml,.,,, except for the omis:
type declarations. l.e. leave all rules the same except
two:

(Fun) ' funa ->e: 7— 7 (Let) '+ let g=e in
Cla:r] - e : 7 '+ e:
Cla:7] +

® These systems are equivalent, since the following tr:
mation converts proofs in one system to proofs in the

Implicit Explicit

+Ffuna ->e: ™ — 7’/ == FHFfunag: ™ ->e: 7™— 71
Pla:r] F e 7 o Cla:r] Fe: 7

I

€S 421 — Class 22, 4/11/13 — 10

OCaml,;,,, type system (cont.)

(We leave the corresponding transformation for let e
sions to you.)

® So, an expression in OCaml,;,,, is typable iff it can be
to have a type in the OCaml;,, type system iff it ¢
completed with type declarations and then be proven
OCaml,.,, type system. So what’s the difference? Wi
explicitly-typed system, we can check types — which i:
simple — but with the implicitly-typed langauges, we Fh
infer types, which is much harder.

€S 421 — Class 22, 4/11/13 — 11

Type inference

® We will not discuss type inference formally. But v
discuss it informally. The basic idea is this:

¢ Given a term with no type declarations, start to
constraints on the types of the variables; these cons
are implied by what appears in the term:

e If we see a subterm £ e, then we know f is a ful
i.e. it has a type of the form o — 3 for some a ai

e If we see a subterm if e then ..., we know e h:¢
bool.

e If we see £ (g e), then in addition to knowing
above) that f’s type has the form « — 3 and g’
has the form v — 6, we know that o« = 9.

€S 421 — Class 22, 4/11/13 — 12

Type inference (cont.)

e If we see el + e2, we know el and e2 have type
we see el +. e2, we know el and 2 have type

e ... and so on.

e Continuing in this way, we either find all constraii
find a contradiction (e.g. our constraints show that
float, or a term of the form a — 3 also has to ha
form ~ x 6, or a term has both type o — 5 and type
something).

e If we don’t find a contradiction, the term is typal
we still have some Greek letters that are unconstr:
we can replace them by any types we want (unifor
course). (In that case, the term has more than one 1

€S 421 — Class 22, 4/11/13 — 13

Informal examples of type infere

fun x —> x+1 x..-“{,
fun £ -> 1 + (f 3) £ 14> Iat
fun £ —> £ 3 “’\.'m\"ﬂo(

fun £f —-> fun x > £ (£ x) .Y:o(—"b
x X

CS 421 — Class 22, 4/11/13 — 14

Informal examples of type infere
(cont.)

fun x —> x +. 1.0 y:'ﬂoq..“'

fun f -> fun g > g (£ 1) (£ true) Lkt

(fun £ —> £ £)(fun i -> i)

D4

let £f = fun i —-> i1 in £ £

X

€S 421 — Class 22, 4/11/13 — 15

Wrap-up

® Today we discussed monomorphically-typed OCaml,
with and without explicit type declarations. The basis
discussion was the type systems for the two languages,
the explicitly-typed one. We showed examples, dis
type-checking, and viewed type inference as the prob
adding declarations to an implicitly-typed term.

® We did this primarily as a prelude to the actual OCan
system, which is polymorphic.

® What to do now:
® MP11

€S 421 — Class 22, 4/11/13 — 16

