
Lecture 22 — OCaml type-checking

• In the next three lectures, will discuss type-checking in
OCaml (which is much more interesting than type-checking
in Java). The three lectures will concern: non-polymorphic
OCaml; polymorphic OCaml; polymorphic OCaml with side
effects.

• Today we will cover monomorphic OCaml:

• Typing rules

• Examples

• Type-checking algorithm

• Type inference

CS 421 — Class 22, 4/11/13 — 1

Monomorphic OCaml

• Today we will discuss two simplified versions of OCaml:

• OCamlem — explicit type declarations; monomorphic types
(no type variables). E.g.

fun x:int -> fun f:(int->string) -> f x

• OCamlim — no type declarations; no polymorphism. E.g.

fun x -> fun f -> f x

• For us, the interesting question about expressions in OCamlim
is this: can we infer the types of variables — i.e. transform
the expression to an expression in OCamlem?

CS 421 — Class 22, 4/11/13 — 2

OCamlem
type type = IntType | BoolType | FunType of type * type

type exp = Int of int | True | False | Var of string

| App of exp * exp | Fun of string * type * exp

| Operation of exp * binary_operation * exp

| Let of string * exp * exp

Type rules (where Γ is a mapping from variables to types, and each binary operation ⊕

is assumed to have a given type τ → τ ′ → τ ′′):

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e ⊕ e′ : τ ′′

Γ ` e : τ
Γ ` e′ : τ ′

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(Let) Γ ` let a:τ=e in e′ : τ ′

Γ ` e : τ
Γ[a:τ] ` e′ : τ ′

CS 421 — Class 22, 4/11/13 — 3

Examples

∅ ` fun x:int -> x+1 : int → int

∅ ` fun f:(int->int) -> f 3 : (int→ int) → int

CS 421 — Class 22, 4/11/13 — 4

Examples (cont.)
∅ ` fun f:(int->int) -> fun x:int -> f (f x)

: (int→ int) → (int→ int)

CS 421 — Class 22, 4/11/13 — 5

Type-correctness theorem

• As we mentioned w.r.t. the MiniJava type system, we can in
principle prove that this type system is “correct” — that is,
it is consistent with the operational semantics of MiniOCaml:

Theorem If ∅ ` e: τ , then if e ⇓ v, v is a value of type τ (i.e. if τ
= int, then v = Int i, if τ = · · · → · · · , then v = fun x -> e,
etc.). Furthermore, although it is possible that there is no v

such that e ⇓ v (since the evaluation of e may not terminate),
no sub-evaluation produces a type error.

CS 421 — Class 22, 4/11/13 — 6

Type-checking algorithm

• Given an explicitly-typed term t, tcheck determines whether
t is type-correct and what its correct type is. Γ is a type
environment mapping program variables to types.

tcheck t Γ = match t with
i → int
| true → bool
| false → bool
| x → Γ x
| fun x : τ -> e → (τ → tcheck e Γ[τ/x])
| e1 e2 → let τ1 = tcheck e1 Γ

and τ2 = tcheck e2 Γ
in if τ1 = τ ′1 → τ ′′1 and τ2 = τ ′1

then τ ′′1 else error

CS 421 — Class 22, 4/11/13 — 7

Implicitly-typed monomorphic
OCaml (OCamlim)

• If we omit the declarations of lambda-bound variables, the
language is more similar to OCaml.

• Can view this in two ways (that turn out to be equivalent).
The first is:

• Given an expression e in OCamlim, can view it as an
incomplete expression in OCamlem, and ask: can we add
type declarations to all variables so that this expression type
checks? This is called type inference.

• If it is impossible to fill in type declarations in e, the term is
said to be untypable. (Note that there may be more than
one way to fill in types.)

CS 421 — Class 22, 4/11/13 — 8

Examples of typable and untypable
terms in OCaml OCamlim

fun f: ____________ -> fun x:________ -> f (f x)

fun f:_____________ -> f f

fun f:__________ -> fun g:________ -> g (f 1) (f true)

(fun f:_________ -> f f)(fun i:_____ -> i)

let f:_____________ = fun i:_______ -> i in f f

CS 421 — Class 22, 4/11/13 — 9

OCamlim type system

• The other way to look at OCamlim is as its own language
with its own type system. In fact, its type system is identical
to the type system of OCamlem, except for the omission of
type declarations. I.e. leave all rules the same except these
two:

(Fun) Γ ` fun a -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(Let) Γ ` let a=e in e′ : τ ′

Γ ` e : τ
Γ[a:τ] ` e′ : τ ′

• These systems are equivalent, since the following transfor-
mation converts proofs in one system to proofs in the other:

Implicit Explicit

Γ ` fun a -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
<=>

Γ ` fun a : τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′

CS 421 — Class 22, 4/11/13 — 10

OCamlim type system (cont.)

(We leave the corresponding transformation for let expres-
sions to you.)

• So, an expression in OCamlim is typable iff it can be proven
to have a type in the OCamlim type system iff it can be
completed with type declarations and then be proven in the
OCamlem type system. So what’s the difference? With the
explicitly-typed system, we can check types — which is really
simple — but with the implicitly-typed langauges, we have to
infer types, which is much harder.

CS 421 — Class 22, 4/11/13 — 11

Type inference

• We will not discuss type inference formally. But we will
discuss it informally. The basic idea is this:

• Given a term with no type declarations, start to write
constraints on the types of the variables; these constraints
are implied by what appears in the term:

• If we see a subterm f e, then we know f is a function,
i.e. it has a type of the form α→ β for some α and β.

• If we see a subterm if e then ..., we know e has type
bool.

• If we see f (g e), then in addition to knowing (from
above) that f’s type has the form α → β and g’s type
has the form γ → δ, we know that α = δ.

CS 421 — Class 22, 4/11/13 — 12

Type inference (cont.)

• If we see e1 + e2, we know e1 and e2 have type int; if
we see e1 +. e2, we know e1 and e2 have type float.

• ... and so on.

• Continuing in this way, we either find all constraints, or
find a contradiction (e.g. our constraints show that int =
float, or a term of the form α → β also has to have the
form γ ∗ δ, or a term has both type α → β and type α, or
something).

• If we don’t find a contradiction, the term is typable. If
we still have some Greek letters that are unconstrainted,
we can replace them by any types we want (uniformly, of
course). (In that case, the term has more than one type.)

CS 421 — Class 22, 4/11/13 — 13

Informal examples of type inference

fun x -> x+1

fun f -> 1 + (f 3)

fun f -> f 3

fun f -> fun x -> f (f x)

CS 421 — Class 22, 4/11/13 — 14

Informal examples of type inference
(cont.)

fun x -> x +. 1

fun f -> fun g -> g (f 1) (f true)

(fun f -> f f)(fun i -> i)

let f = fun i -> i in f f

CS 421 — Class 22, 4/11/13 — 15

Wrap-up

• Today we discussed monomorphically-typed OCaml, both
with and without explicit type declarations. The basis of our
discussion was the type systems for the two languages, mainly
the explicitly-typed one. We showed examples, discussed
type-checking, and viewed type inference as the problem of
adding declarations to an implicitly-typed term.

• We did this primarily as a prelude to the actual OCaml type
system, which is polymorphic.

• What to do now:

• MP11

CS 421 — Class 22, 4/11/13 — 16

