Lecture 21 — More higher-order
functions

® In preparation for MP 11, we will look at more uses of
higher-order functions, especially for “combinator-style pro-
gramming.”

® Today we will:

® Finish discussion of compilation of functional languages

® Discuss using higher-order functions to write parsers
® Discuss MP 11

CS 421 — Class 21, 4/9/13 — 1

Environment model evaluation rules

(Const) Const ¢, p | Const ¢ (Var) a, p I p(a)
(Fun) Fun(a,e), p | <Fun(a,e), p > (Rec) Rec(f,e), p < Rec(f.,e), p >
(6)eope,pllvOP () ope, pll OPw
e, pdv e, pi v
e, p v
(If) If(eq, ez, e3), p Y v (If) If(eq, e2, e3), p Y v
e1, p { True e, p | False
ez, pd v es, p | v
(List) [e1, ..., en], p 4 [v1, ..., vu] (Let) Let(a,ee’), p I v’
e, p 4 v e,plv
: e, pla— v] | v
en, p I vy
(App) e e, p | v (App) e €', p | v”
e, p I <Fun(a, €"), p’ > e, p i v,
e, pl where v = <Rec(f, Fun(a, ")), p’ >
e’ p'lla— '] v e pl v

e, pla— v, f—v] 0

CS 421 — Class 21, 4/9/13 — 2

Compilation of MiniOCaml

® Compilation of functional languages starts from environment
model.

® Need to discuss:

® Representation of environments and closures, and variable
look-up

® Run-time structures (stack and heap)
e Compilation rules, esp. for application and abstraction

CS 421 — Class 21, 4/9/13 — 3

Representation of environments

® Suppose we represent environments by (string * value)
list. App rule becomes:

(App) e €', p | v
e, p | <Fun(a, €¢’), p’ >

e, pl v
e’, (a,v") = p v

and the variable rule does a recursive list look-up.

® Crucial question: Given a variable reference, can we deter-
mine at compile time where in the list it will occur?

CS 421 — Class 21, 4/9/13 — 4

Representation of environments
(cont.)

® For any variable reference, crucial number is the number of
declarations (let or fun) intervening between the refer-
ence and the variable’s declaration.

® We will assume that the type-checking phase of the compiler
has marked every variable reference with this number. E.g.

fun x -> let £ = fun y -> x + (let y = y+1 in x+y))

in f x

CS 421 — Class 21, 4/9/13 — 5

Representation of environments
(cont.)

® Represent environment by linked list of values — names are
not needed.

® An expression is executed in a “current” environment. Sup-
pose register %env points to the head of the current envi-
ronment. Rule for variable reference:

(Var) ar ~ [MOV %tmp,%env; LOADIND %tmp,4(%tmp);...(k times)...]

® Now, we just have to make sure current environment is
correctly formed; happens in abstraction and application rules
(and let and letrec).

CS 421 — Class 21, 4/9/13 — 6

Runtime state

® For concreteness, assume this state layout (all subject to
change for real implementation, of course):

e Stack consists of frames having exactly two addresses:

e Return address — pointer into code of calling function

e Calling function’s environment

e Register %env points to head of current environment.
Register % et used for return values

e Environments are linked lists of primitive values and pointers
to “heap values” — lists, tuples, closures

® Closures are heap-allocated pairs, containing pointer to
code and pointer to environment

CS 421 — Class 21, 4/9/13 — 7

Compilation

® Will give compilation rules only informally.

® Compilation rules correspond closely to rules of environment
model.

® Compilation rules for abstraction and application are same
for static and dynamic typing. (Only rules for primitive
operations change.)

® Compilation rules for other stuff — built-in operations, if —
are normal, e.g.

(Var) el + €2, loc ~~ ill @ il2 @ [ADD loc,locl,loc2]
el, locl ~~ ill
e2, loc2 ~~ il2

CS 421 — Class 21, 4/9/13 — 8

Compiling abstractions

® An abstraction does not involve any real computation — just
creates a closure. However, the body of the abstraction must
be compiled a little differently from an ordinary expression; it
has to include code for function return at the end.

® In fun = -> e, e should be compiled like this, somewhere in
memory:

(Function body) e as function body ~~ il @ [move loc into %ret,
then return from function (restore env. pointer and get return address

from stack frame; pop stack; jump to return address)]
e, loc ~ il

® Suppose this code is at location m . The abstraction itself
iIs compiled like this:

un) fun x -> e, ~ = ure i ; move my, Yoenv i u
Fun) fun x -> e, loc loc = allocate closure in heap; move m, %env into closure

CS 421 — Class 21, 4/9/13 — 9

Compiling applications

® Argument must evaluate to a (pointer to a) closure; appli-
cation is where environments are built.

(App) el e2, loc ~~ ill @ il2 @ [function pointer m s = loc1[0], environment
pointer ep = locl[1]; create new environment ep’ by cons’ing
loc2 to ep; push new stack frame, storing m.,.; and %env; %env
= ep’; JUMP m]

el, locl ~ ill
e2, loc2 ~~ il2

where m,.; is address of the next instruction after this code.

CS 421 — Class 21, 4/9/13 — 10

Combinator-style programming

® Can write complex programs by defining a library of higher-

order functions and applying them to one another (and to
built-in functions). These functions are called combinators
(technically just a term for a closed expression).

® Makes it easy to create functions within the domain for
which the combinators is designed.

® Is associated with notion of “domain-specific languages,”
especially when the functions are defines as infix operators;
result “looks like” a language for the specific domain.

CS 421 — Class 21, 4/9/13 — 11

Parser combinators

® A parser is a function of type token list — (token list)
option. (Recall type « option = Some « | None.)

® Idea is to define functions that build parsers, rather than
building parsers “by hand.”

® E.g. Parser to recognize a single token:

let token s = fun cl -> if cl=[] then None
else if s=hd cl then Some (tl cl)
else None;;

let parsex = token x;;

parsex [x];;

parsexl[a];;

CS 421 — Class 21, 4/9/13 — 12

Parser combinators (cont.)

® Parser combinators combine parsers to make more compli-
cated parsers:

let (++) p q = fun cl -> match p cl with None -> None
| Some cl’ -> q cl’;;

let parsexy = token x ++ token y
parsexy [x, y]
parsexy [x, z]

® (Note use of infix operator.)

CS 421 — Class 21, 4/9/13 — 13

Parser combinators (cont.)

let (|l) p g = fun cl -> match p cl with None -> q cl
| Some cl’ -> Some cl’;;

let parsexyorz = parsexy || token z
parsexyorz[x, y]
parsexyorz [z]

CS 421 — Class 21, 4/9/13 — 14

Parser combinators (cont.)

® Put this together to define parser for grammar:

A -> aB | b

B -> cB | A
let rec parseA cl = ((token ’a’ ++ parseB) || token ’b’) cl
and parseB cl = ((token ’c’ ++ parseB) || parseld) cl;;

parseA [’a’;’c’;’c’;’a’;’b]

CS 421 — Class 21, 4/9/13 — 15

Why parser combinators?

® Advantages of this approach:

e Convenience:

let epsilon : parser = fun toklis -> toklis
let rec kstar (p:parser) : parser

= fun toklis -> (p ++ (kstar p)) toklis || epsilon
alist = kstar (token ’a’)

e Can write entirely different parsers:

let handle_includes (p:parser) : parser
= fun toklis ->
if hd toklis = "#include"
then let new_toks
= lex (readfile (hd (tl toklis)))
in p (new_toks @ tl1 (tl toklis)
else p toklis

CS 421 — Class 21, 4/9/13 — 16

MP 11

® You will get practice with higher-order functions by filling in
code in a combinator-based picture-drawing system.

® In this combinator library, the following definitions are key:

type point = float * float
type transformation = point -> point

type draw_cmd = Pixel of point

| Line of point * point
| Oval of point * point * point

type picture = transformation -> draw_cmd list

CS 421 — Class 21, 4/9/13 — 17

Wrap-up
® Today we discussed a specific example of the use of higher-
order functions, a “combinator library” for parsing.

® We did this for more practice with higher-order functions.

® What to do now:
® MP11

CS 421 — Class 21, 4/9/13 — 18

