
Lecture 21 — More higher-order
functions

• In preparation for MP 11, we will look at more uses of
higher-order functions, especially for “combinator-style pro-
gramming.”

• Today we will:

• Finish discussion of compilation of functional languages

• Discuss using higher-order functions to write parsers

• Discuss MP 11

CS 421 — Class 21, 4/9/13 — 1

Environment model evaluation rules
(Const) Const c, ρ ⇓ Const c (Var) a, ρ ⇓ ρ(a)

(Fun) Fun(a,e), ρ ⇓ <Fun(a,e), ρ > (Rec) Rec(f ,e), ρ ⇓ < Rec(f ,e), ρ >

(δ) e op e′, ρ ⇓ v OP v′

e, ρ ⇓ v
e′, ρ ⇓ v′

(δ) op e, ρ ⇓ OP v

e, ρ ⇓ v

(If) If(e1, e2, e3), ρ ⇓ v
e1, ρ ⇓ True

e2, ρ ⇓ v

(If) If(e1, e2, e3), ρ ⇓ v
e1, ρ ⇓ False

e3, ρ ⇓ v

(List) [e1, . . ., en], ρ ⇓ [v1, . . ., vn]

e1, ρ ⇓ v1
...

en, ρ ⇓ vn

(Let) Let(a,e,e′), ρ ⇓ v′
e, ρ ⇓ v
e′, ρ[a 7→ v] ⇓ v′

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >

e′, ρ ⇓ v′
e′′, ρ′[a 7→ v′] ⇓ v

(App) e e′, ρ ⇓ v′′
e, ρ ⇓ v,

where v = <Rec(f , Fun(a, e′′)), ρ′ >

e′, ρ ⇓ v′
e′′, ρ′[a 7→ v′, f 7→ v] ⇓ v′′

CS 421 — Class 21, 4/9/13 — 2

Compilation of MiniOCaml

• Compilation of functional languages starts from environment
model.

• Need to discuss:

• Representation of environments and closures, and variable
look-up

• Run-time structures (stack and heap)

• Compilation rules, esp. for application and abstraction

CS 421 — Class 21, 4/9/13 — 3

Representation of environments

• Suppose we represent environments by (string * value)

list. App rule becomes:

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >
e′, ρ ⇓ v′
e′′, (a, v′) :: ρ′ ⇓ v

and the variable rule does a recursive list look-up.

• Crucial question: Given a variable reference, can we deter-
mine at compile time where in the list it will occur?

CS 421 — Class 21, 4/9/13 — 4

Representation of environments
(cont.)

• For any variable reference, crucial number is the number of

declarations (let or fun) intervening between the refer-

ence and the variable’s declaration.

• We will assume that the type-checking phase of the compiler
has marked every variable reference with this number. E.g.

fun x -> let f = fun y -> x + (let y = y+1 in x+y))

in f x

CS 421 — Class 21, 4/9/13 — 5

Representation of environments
(cont.)

• Represent environment by linked list of values — names are
not needed.

• An expression is executed in a “current” environment. Sup-
pose register %env points to the head of the current envi-
ronment. Rule for variable reference:

(Var) ak [MOV %tmp,%env; LOADIND %tmp,4(%tmp);...(k times)...]

• Now, we just have to make sure current environment is
correctly formed; happens in abstraction and application rules
(and let and letrec).

CS 421 — Class 21, 4/9/13 — 6

Runtime state

• For concreteness, assume this state layout (all subject to
change for real implementation, of course):

• Stack consists of frames having exactly two addresses:

• Return address — pointer into code of calling function

• Calling function’s environment

• Register %env points to head of current environment.
Register %ret used for return values

• Environments are linked lists of primitive values and pointers
to “heap values” — lists, tuples, closures

• Closures are heap-allocated pairs, containing pointer to
code and pointer to environment

CS 421 — Class 21, 4/9/13 — 7

Compilation

• Will give compilation rules only informally.

• Compilation rules correspond closely to rules of environment
model.

• Compilation rules for abstraction and application are same
for static and dynamic typing. (Only rules for primitive
operations change.)

• Compilation rules for other stuff — built-in operations, if —
are normal, e.g.

(Var) e1 + e2, loc il1 @ il2 @ [ADD loc,loc1,loc2]
e1, loc1 il1
e2, loc2 il2

CS 421 — Class 21, 4/9/13 — 8

Compiling abstractions
• An abstraction does not involve any real computation — just

creates a closure. However, the body of the abstraction must
be compiled a little differently from an ordinary expression; it
has to include code for function return at the end.

• In fun x -> e, e should be compiled like this, somewhere in
memory:

(Function body) e as function body il @ [move loc into %ret,
then return from function (restore env. pointer and get return address
from stack frame; pop stack; jump to return address)]

e, loc il

• Suppose this code is at location mf . The abstraction itself
is compiled like this:

(Fun) fun x -> e, loc [loc = allocate closure in heap; move mf , %env into closure]

CS 421 — Class 21, 4/9/13 — 9

Compiling applications

• Argument must evaluate to a (pointer to a) closure; appli-
cation is where environments are built.

(App) e1 e2, loc il1 @ il2 @ [function pointer mf = loc1[0], environment
pointer ep = loc1[1]; create new environment ep′ by cons’ing
loc2 to ep; push new stack frame, storing mret and %env; %env
= ep′; JUMP mf]

e1, loc1 il1
e2, loc2 il2

where mret is address of the next instruction after this code.

CS 421 — Class 21, 4/9/13 — 10

Combinator-style programming

• Can write complex programs by defining a library of higher-
order functions and applying them to one another (and to
built-in functions). These functions are called combinators

(technically just a term for a closed expression).

• Makes it easy to create functions within the domain for
which the combinators is designed.

• Is associated with notion of “domain-specific languages,”
especially when the functions are defines as infix operators;
result “looks like” a language for the specific domain.

CS 421 — Class 21, 4/9/13 — 11

Parser combinators

• A parser is a function of type token list → (token list)

option. (Recall type α option = Some α | None.)

• Idea is to define functions that build parsers, rather than
building parsers “by hand.”

• E.g. Parser to recognize a single token:

let token s = fun cl -> if cl=[] then None

else if s=hd cl then Some (tl cl)

else None;;

let parsex = token x;;

parsex [x];;

parsex[a];;

CS 421 — Class 21, 4/9/13 — 12

Parser combinators (cont.)

• Parser combinators combine parsers to make more compli-
cated parsers:

let (++) p q = fun cl -> match p cl with None -> None

| Some cl’ -> q cl’;;

let parsexy = token x ++ token y

parsexy [x, y]

parsexy [x, z]

• (Note use of infix operator.)

CS 421 — Class 21, 4/9/13 — 13

Parser combinators (cont.)
let (||) p q = fun cl -> match p cl with None -> q cl

| Some cl’ -> Some cl’;;

let parsexyorz = parsexy || token z

parsexyorz[x, y]

parsexyorz [z]

CS 421 — Class 21, 4/9/13 — 14

Parser combinators (cont.)

• Put this together to define parser for grammar:

A -> aB | b

B -> cB | A

let rec parseA cl = ((token ’a’ ++ parseB) || token ’b’) cl

and parseB cl = ((token ’c’ ++ parseB) || parseA) cl;;

parseA [’a’;’c’;’c’;’a’;’b]

CS 421 — Class 21, 4/9/13 — 15

Why parser combinators?

• Advantages of this approach:

• Convenience:

let epsilon : parser = fun toklis -> toklis

let rec kstar (p:parser) : parser

= fun toklis -> (p ++ (kstar p)) toklis || epsilon

alist = kstar (token ’a’)

• Can write entirely different parsers:

let handle_includes (p:parser) : parser

= fun toklis ->

if hd toklis = "#include"

then let new_toks

= lex (readfile (hd (tl toklis)))

in p (new_toks @ tl (tl toklis)

else p toklis

CS 421 — Class 21, 4/9/13 — 16

MP 11

• You will get practice with higher-order functions by filling in
code in a combinator-based picture-drawing system.

• In this combinator library, the following definitions are key:

type point = float * float

type transformation = point -> point

type draw_cmd = Pixel of point

| Line of point * point

| Oval of point * point * point

type picture = transformation -> draw_cmd list

CS 421 — Class 21, 4/9/13 — 17

Wrap-up

• Today we discussed a specific example of the use of higher-
order functions, a “combinator library” for parsing.

• We did this for more practice with higher-order functions.

• What to do now:

• MP11

CS 421 — Class 21, 4/9/13 — 18

