
Lecture 20 — Environment model

• The environment model is an alternative to the substitution
model, which gives the same results but is more realistic.

• Today we will:

• Look at more examples of higher-order functions

• Discuss a different model of evaluation - the environment
model

• Discuss compilation of functional languages

CS 421 — Class 20, 4/4/13 — 1

map

• The most famous of all higher-order functions:

let rec map f lis = if lis=[] then []

else (f (hd lis)) :: map f (tl lis);;

• map (fun x->x+1) [1;2;3]

• let incrBy n lis = map (fun x -> x+n) lis

• let incrBy n = map (fun x -> x+n)

• Type of map?

CS 421 — Class 20, 4/4/13 — 2

map exercises

• addpairs: (int * int) list → int list

• appendString: string → string list → string list concatenates the first

argument to the end of every string in the second argument

• incrall: int list list → int list list increments every element of every list in

its argument

CS 421 — Class 20, 4/4/13 — 3

fold right

• Usually called reduce, but called fold_right in OCaml:

let rec fold_right (f:’a->’b->’b) (lis:’a list) (z:’b) : ’b

= if lis=[] then z else f (hd lis) (fold_right f (tl lis) z)

• fold_right (fun s s’ -> s @ s’) ["a"; "b"; "c"] ""

• fold_right (fun x y -> x+y) [3;4;5] 0

• fold_right (fun x y -> x::y) [3;4;5] []

• let h f lis = fold_right (fun x y -> (f x)::y) lis []

CS 421 — Class 20, 4/4/13 — 4

Dictionaries as functions

• Define a “dictionary” to be a function from strings to ints.
Consider this definition of the basic operations:

type dictionary = (string * int) list

let emptyDict = []

let rec lookup k d = if d=[] then -1

else if k = fst (hd d) then snd (hd d)

else lookup k (tl d)

let add k v d = (k,v) :: d

CS 421 — Class 20, 4/4/13 — 5

Dictionaries as functions

• Define the characteristic function of a dictionary d to be
fun k -> lookup k d.

• What are the characteristic functions of these dictionaries:

• emptyDict

• add "a" 3 emptyDict

• add "b" 4 (add "a" 3 emptyDict)

• add "a" 5 (add "b" 4 (add "a" 3 emptyDict))

CS 421 — Class 20, 4/4/13 — 6

Dictionaries as functions

• Can represent dictionaries directly as characteristic functions:

type dictionary = string -> int

let emptyDict = fun k -> -1

let rec lookup k d = d k

let add k v d = fun k’ -> if k’=k then v else d k’

• lookup "a" (add "a" 3 emptyDict) ⇓

CS 421 — Class 20, 4/4/13 — 7

Dictionaries as functions

• lookup "a" (add "b" 4 (add "a" 3 emptyDict)) ⇓

CS 421 — Class 20, 4/4/13 — 8

Dictionaries as functions (v. 2)

• Returning -1 when a name is not in the dictionary is not such
a good plan. Suppose lookup in the list representation above
were redefined this way:

let rec lookup k d = if d=[] then raise NotBoundException

else if k = fst (hd d) then snd (hd d)

else lookup k (tl d)

• Define emptyDict, lookup, and add in the characteristic
function representation.

CS 421 — Class 20, 4/4/13 — 9

Dictionaries as functions (v. 3)

• Another approach to handling the unbound name issue is to
use the “option” type in OCaml:

type ’a option = Some of ’a | None

• lookup in the list representation, using int option:

let rec lookup k d = if d=[] then None

else if k = fst (hd d) then Some (snd (hd d))

else lookup k (tl d)

• Define emptyDict, lookup, and add in the characteristic
function representation.

CS 421 — Class 20, 4/4/13 — 10

Evaluation in the environment model

• Substitution model is easy to understand, but it does not
reflect how actual implementations work.

• To apply function Fun(x, e) to value v, instead of creating
a new copy of e with all the x’s replaced by v’s, just record

that x has value v in a separate data structure, called an
environment.

• All expression evaluation occurs “within” an environment.

• To remember the values of variables in a function fun x

-> e, need to create a closure < fun x → e, ρ >.

CS 421 — Class 20, 4/4/13 — 11

Environment model evaluation rules
(Const) Const c, ρ ⇓ Const c (Var) a, ρ ⇓ ρ(a)

(Fun) Fun(a,e), ρ ⇓ <Fun(a,e), ρ > (Rec) Rec(f ,e), ρ ⇓ < Rec(f ,e), ρ >

(δ) e op e′, ρ ⇓ v OP v′

e, ρ ⇓ v
e′, ρ ⇓ v′

(δ) op e, ρ ⇓ OP v

e, ρ ⇓ v

(If) If(e1, e2, e3), ρ ⇓ v
e1, ρ ⇓ True

e2, ρ ⇓ v

(If) If(e1, e2, e3), ρ ⇓ v
e1, ρ ⇓ False

e3, ρ ⇓ v

(List) [e1, . . ., en], ρ ⇓ [v1, . . ., vn]

e1, ρ ⇓ v1
...

en, ρ ⇓ vn

(Let) Let(a,e,e′), ρ ⇓ v′
e, ρ ⇓ v
e′, ρ[a 7→ v] ⇓ v′

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >

e′, ρ ⇓ v′
e′′, ρ′[a 7→ v′] ⇓ v

(App) e e′, ρ ⇓ v′′
e, ρ ⇓ v,

where v = <Rec(f , Fun(a, e′′)), ρ′ >

e′, ρ ⇓ v′
e′′, ρ′[a 7→ v′, f 7→ v] ⇓ v′′

CS 421 — Class 20, 4/4/13 — 12

Evaluation in environment model

• ∅ denotes the empty environment. We may write ∅[x 7→ v]

as {x 7→ v}.
let x = 3 in x+1, ∅

(fun x -> x+1) 3, ∅

CS 421 — Class 20, 4/4/13 — 13

Evaluation in environment model
((fun x -> fun y -> x+y) 3) 4, ∅

CS 421 — Class 20, 4/4/13 — 14

Evaluation in environment model
let f = fun x -> fun y -> x+y, ∅
in let g = f 1 in g 2

CS 421 — Class 20, 4/4/13 — 15

Compilation of MiniOCaml

• Compilation of functional languages starts from environment
model.

• Need to discuss:

• Representation of environments and closures, and variable
look-up

• Run-time structures (stack and heap)

• Compilation rules, esp. for application and abstraction

CS 421 — Class 20, 4/4/13 — 16

Representation of environments

• Suppose we represent environments by (string * value)

list. App rule becomes:

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >
e′, ρ ⇓ v′
e′′, (a, v′) :: ρ′ ⇓ v

and the variable rule does a recursive list look-up.

• Crucial question: Given a variable reference, can we deter-
mine at compile time where in the list it will occur?

CS 421 — Class 20, 4/4/13 — 17

Representation of environments
(cont.)

• For any variable reference, crucial number is the number of

declarations (let or fun) intervening between the refer-

ence and the variable’s declaration.

• We will assume that the type-checking phase of the compiler
has marked every variable reference with this number. E.g.

fun x -> let f = fun y -> x + (let y = y+1 in x+y))

in f x

CS 421 — Class 20, 4/4/13 — 18

Representation of environments
(cont.)

• Represent environment by linked list of values — names are
not needed.

• An expression is executed in a “current” environment. Sup-
pose register %env points to the head of the current envi-
ronment. Rule for variable reference:

(Var) ak [MOV %tmp,%env; LOADIND %tmp,4(%tmp);...(k times)...]

• Now, we just have to make sure current environment is
correctly formed; happens in abstraction and application rules
(and let and letrec).

CS 421 — Class 20, 4/4/13 — 19

Runtime state

• For concreteness, assume this state layout (all subject to
change for real implementation, of course):

• Stack consists of frames having exactly two addresses:

• Return address — pointer into code of calling function

• Calling function’s environment

• Register %env points to head of current environment.
Register %ret used for return values

• Environments are linked lists of primitive values and pointers
to “heap values” — lists, tuples, closures

• Closures are heap-allocated pairs, containing pointer to
code and pointer to environment

CS 421 — Class 20, 4/4/13 — 20

Compilation

• Will give compilation rules only informally.

• Compilation rules correspond closely to rules of environment
model.

• Compilation rules for abstraction and application are same
for static and dynamic typing. (Only rules for primitive
operations change.)

• Compilation rules for other stuff — built-in operations, if —
are normal, e.g.

(Var) e1 + e2, loc il1 @ il2 @ [ADD loc,loc1,loc2]
e1, loc1 il1
e2, loc2 il2

CS 421 — Class 20, 4/4/13 — 21

Compiling abstractions
• An abstraction does not involve any real computation — just

creates a closure. However, the body of the abstraction must
be compiled a little differently from an ordinary expression; it
has to include code for function return at the end.

• In fun x -> e, e should be compiled like this, somewhere in
memory:

(Function body) e as function body il @ [move loc into %ret,
then return from function (restore env. pointer and get return address
from stack frame; pop stack; jump to return address)]

e, loc il

• Suppose this code is at location mf . The abstraction itself
is compiled like this:

(Fun) fun x -> e, loc [loc = allocate closure in heap; move mf , %env into closure]

CS 421 — Class 20, 4/4/13 — 22

Compiling applications

• Argument must evaluate to a (pointer to a) closure; this is
where environments are built.

(App) e1 e2, loc il1 @ il2 @ [function pointer mf = loc1[0], environment
pointer ep = loc1[1]; create new environment ep′ by cons’ing
loc2 to ep; push new stack frame, storing mret and %env; %env
= ep′; JUMP mf]

e1, loc1 il1
e2, loc2 il2

where mret is address of the next instruction after this code.

CS 421 — Class 20, 4/4/13 — 23

Wrap-up

• Today we discussed higher-order functions, the environment
model of evaluation, and compilation of functional languages.

• We did this to get a better idea of how functional languages
are implemented, and how to use them.

• What to do now:

• MP10

CS 421 — Class 20, 4/4/13 — 24

