
Lecture 2 — OCaml basics and
recursive functions on lists

• In this lecture, you will first learn some more basic OCaml,
and then practice writing recursive functions on lists, which
is perhaps the most common kind of programming done in
functional languages. (In this course, we will also spend a
lot of time writing recursive functions on trees.)

Specifically, we’ll talk about these OCaml features:

• Let expressions and scope
• Functions on tuples
• Pattern-matching

and then talk about how you can write recursive functions
easily if you learn to believe in the recursion fairy.

CS 421 — Class 2, 1/17/13 — 1

Let expressions
• The let expression is fundamental in OCaml because it is

how names are introduced.

• We saw in the last class how let is used at the top level:

• let x = expr;;

• let f args = expr;;

• let rec f args = expr;;

CS 421 — Class 2, 1/17/13 — 2

Scope in OCaml
• “Scope” means: in what region of the program can a partic-

ular name be used?

• Scope of top-level let expressions:

let x = e;; — scope of x is everything that follows this let
let f x = e;; — scope of x is e; scope of f is everything

that follows this let
let rec f x = e;; scope of x is e; scope of f is e and every-

thing that follows this let

CS 421 — Class 2, 1/17/13 — 3

Let expressions (cont.)
• Let expressions can also appear within other expressions, to

introduce local names.

• Syntax of non-top-level (aka “nested”) let expressions:

• let x = expr1 in expr2

— evaluate expr1 and return value of expr2 (which can
refer to x)
• let f args = expr1 in expr2

— define function f (with expr1 as its body) and return
value of expr2 (which can call f)
• let rec f args = expr1 in expr2

— define function f and return value of expr2 (which can
call f)

CS 421 — Class 2, 1/17/13 — 4

Let expressions (cont.)
• Give the values of these expressions:

(let x = 4 in x*x) + 5

let x = (let y = 1+2 in y*y) in x*x

let sumsqrs x y = let sqr a = a*a

in sqr x + sqr y

in sumsqrs 3 5

let binom n m = let rec fac x = if x=0 then 1 else x * fac (x-1)

in fac n / (fac m * fac (n-m))

in binom 1 1

CS 421 — Class 2, 1/17/13 — 5

Scope in OCaml (cont.)
• Nested let expressions:

• let x = e in e′ — scope of x is e′

• let f x = e in e′ — scope of x is e; scope of f is e′

• let rec f x = e in e′

— scope of x is e; scope of f is e and e′

• Note: Suppose we have a file with a series of top-level let
definitions. If we replace every ;; by in, the program be-
comes one large let expression; the scope of each name
would be the same.

CS 421 — Class 2, 1/17/13 — 6

Mutual recursion
• What do these top-level definitions do:

let rec even n = if n=0 then true else odd(n-1);;

let rec odd n = if n=0 then false else even(n-1);;

CS 421 — Class 2, 1/17/13 — 7

Pattern-matching
• In let expressions and function definitions, can use patterns

instead of variables. This is handy when defining functions
on structured values like tuples and lists.

• Here are three equivalent ways to write the identical func-
tion, which adds the two members of an int * int pair:

• let sum p = fst p + snd p

• let sum (a,b) = a+b

• let sum p = let (a,b) = p in a+b

CS 421 — Class 2, 1/17/13 — 8

Pattern-matching (cont.)
• Pattern-matching allows us to define functions on larger tu-

ples:

• Ex: fst_of_3 returns the first member of a triple, e.g.
fst_of_3 (4.0, 3, 2) = 4.0. Define it in two different
ways:

CS 421 — Class 2, 1/17/13 — 9

Curried vs. uncurried functions
• Consider two similar function definitions:

let sum1 x y = x+y;;

let sum2 (x,y) = x+y;;

• Show a correct call to each of these functions:

• Give the type of each function:

• What happens if you enter sum1(3,4) or sum2 3 4?

• sum1 is in “curried” form, sum2 in “uncurried” form. Ei-
ther form can be used, but curried form is more common
in OCaml.

CS 421 — Class 2, 1/17/13 — 10

“match” expressions
• match expressions are used to match a pattern to a value.

They give yet another way to define sum:

let sum p = match p with

(a,b) -> a+b;;

• Match expressions are powerful because they allow a func-
tion to be defined with a sequence of alternatives, which give
a more elegant syntax than conditional expressions.

let rec fac n = match n with

0 -> 1 (* match 0 *)

| _ -> n * fac(n-1) (* match anything else *)

CS 421 — Class 2, 1/17/13 — 11

Functions on lists
• Pattern-matching is used commonly to define functions on

lists.

• E.g. define hd: let hd (h::t) = h

• E.g. addfirsttwo: int list → int adds first two elements of a
list: let addfirsttwo (h::ht::tt) = h+ht

• Ex: Define rev2, which switches the first two elements of a
list: rev2 [2;3;4;5] = [3;2;4;5]:

CS 421 — Class 2, 1/17/13 — 12

Functions on lists (cont.)
• Most often, list functions are defined using match expres-

sions with more than one clause, e.g. one clause for the
empty list and one for non-empty lists. Here are two equiva-
lent definitions of a function:

let rec length lis = if lis=[] then 0 else 1 + length (tl lis)

let rec length lis = match lis with

[] -> 0

| h::t -> 1 + length t

CS 421 — Class 2, 1/17/13 — 13

Functions on lists (cont.)
• Ex: second: int list → int returns 0 for an empty list, the

head of a one-element list, and the second element of any
other list. Define it with and without match expressions:

let second lis = if lis==[] then

let second lis = match lis with

[] ->

CS 421 — Class 2, 1/17/13 — 14

The recursion fairy
• Suppose you want to write a function f on lists. This is the

easiest way:

• Assume you are given r = f (tl x) (by the recursion
fairy!)
• Figure out how you can calculate f x from r and hd x (and

only those two things).
• Then you’re almost done: Define f as:
let rec f x = match x with

[] -> fill in base case

| h::t -> calculate f x from h and f t

CS 421 — Class 2, 1/17/13 — 15

Ex: sum
• Define sum: int list→ int that adds up the elements of a list.

• First: To calculate sum lis, suppose s = the sum of the ele-
ments in tl lis. What is the sum of all the elements in lis?

• Second: Define sum:

let rec sum lis = match lis with

[] ->

| h::t ->

CS 421 — Class 2, 1/17/13 — 16

Ex: allpos
• Define allpos: int list → bool that returns true if all ele-

ments of the list are greater than zero, false otherwise.

• First: To calculate allpos lis, suppose a = allpos (tl

lis). Calculate allpos lis from hd lis and a:

• Second: Define allpos:

let rec allpos lis = match lis with

[] ->

| h::t ->

CS 421 — Class 2, 1/17/13 — 17

Ex: pairsums
• Define pairsums: (int * int) list → int list that sums the ele-

ments of each element of its argument:

• E.g. pairsums [(3, 4); (5, 6)] = [7; 11].

• First: To calculate pairsums lis, suppose r = pairsums (tl

lis). Calculate pairsums lis from hd lis and r:

• Second: Define pairsums:

let rec allpos lis = match lis with

[] ->

| (i,j)::t ->

CS 421 — Class 2, 1/17/13 — 18

The recursion fairy redux
• The recursion fairy as given above is too simple to always

work. The proper recursion may not be simply on the tail of
the list, and the base cases may include more than the empty
list. And what if there is more than one argument?

• We won’t try to give a completely general definition. But the
general idea is always the same: Make a recursive call using
arguments that are, in some way, “smaller” then the arguments
you’re given. Assume the result you get back is correct, and go
from there.

CS 421 — Class 2, 1/17/13 — 19

Ex: revcumulsums
• For this example, the empty list is not the only base case.

• revcumulsums lis is the list consisting of the sum of all the
elements followed by the sum of the tail, followed by the
sum of the tail of the tail, etc.:

• revcumulsums [1; 2; 3; 4] = [10; 9; 7; 4].

• First: To calculate revcumulsums lis, suppose r =
revcumulsums (tl lis), and that tl lis is not empty. Cal-
culate revcumulsums lis from r and hd lis:

CS 421 — Class 2, 1/17/13 — 20

Ex: revcumulsums (cont.)
• Second: Define revcumulsums lis:

let rec revcumulsums lis = match lis with

(* handle base cases: *)

| h::t ->

CS 421 — Class 2, 1/17/13 — 21

Ex: pairwisesums
• pairwisesums [1; 2; 3; 4; 5; 6] = [3; 7; 11].

• First: To calculate pairwisesums lis, suppose r =
pairwisesums (tl (tl lis)), and tl lis is not empty. Cal-
culate pairwisesums lis from r, hd lis, and hd (tl lis).

• Second: Define pairwisesums lis (assume |lis| is even):

let rec pairwisesums lis = match lis with

(* handle base cases: *)

| h::ht::tt ->

CS 421 — Class 2, 1/17/13 — 22

Ex: pairwisesums2
• pairwisesums2 [1; 2; 3; 4; 5] = [3; 5; 7; 9].

• First: To calculate pairwisesums2 lis, suppose r =
pairwisesums2 (tl lis), and tl lis is not empty. Calcu-
late pairwisesums2 lis from r, hd lis, and hd (tl lis).

• Second: Define pairwisesums2 lis:

let rec pairwisesums2 lis = match lis with

(* handle base cases: *)

| h::ht::tt ->

CS 421 — Class 2, 1/17/13 — 23

Ex: append
• append lis1 lis2 = lis1 @ lis2.

• First: Recursion is on lis1. To calculate append lis1 lis2,
suppose lis′ = append (tl lis1) lis2. Calculate append

lis1 lis2 from lis′ and hd lis1.

• Second: Define append:

let rec append lis1 lis2 = match lis1 with

[] ->

h::t ->

CS 421 — Class 2, 1/17/13 — 24

Ex: reverse
• reverse [1;2;3] = [3;2;1].

• First: To calculate reverse lis, suppose r = reverse (tl

lis). Calculate reverse lis from r and hd lis. (Hint: you
have to use @.)

• Second: Define reverse:

let rec reverse lis = match lis with

[] ->

h::t ->

CS 421 — Class 2, 1/17/13 — 25

Ex: unencode
• A simple method of compressing data that is effective on

some kinds of data is run-length encoding, where a list of
values is replaced by a list of pairs, each giving a value and
a number of repetitions of that value.

• In OCaml, we could encode a char list as an (int * char)
list, where each pair gives the number of repetitions of the
char. E.g. [(3, ’a’); (1, ’b’); (2, ’a’)] represents the
list [’a’; ’a’; ’a’; ’b’; ’a’; ’a’].

• unencode: (char * int) list → char list takes an encoded list
enc and returns its expanded form.

CS 421 — Class 2, 1/17/13 — 26

Ex: unencode
• First: Suppose hd enc is (1, x) and r = unencode (tl enc).

Calculate unencode enc as a function of r and x.

• Second: Suppose hd enc is (n, x), where n > 1, and r =
unencode (n − 1, x) :: (tl enc). Calculate unencode enc

as a function of r and x.

• The previous two questions suggest that, for unencode, the
trick is making the correct recursive call, depending upon ...

let rec unencode lis =

CS 421 — Class 2, 1/17/13 — 27

Wrap-up
• Today we discussed:
• More OCaml — let, patterns, match, lists
• The recursion fairy

• We discussed it because:
• Writing recursive functions on lists is an essential skill in functional

programming.

• In the next class, we will:
• Talk about how to define new types in OCaml, esp. trees
• Talk about abstract syntax tree

• What to do now:
• MP1
• For more on today’s topic, read the supplementary notes on the web.

CS 421 — Class 2, 1/17/13 — 28

