
Lecture 19 — Higher-order
functions

• Functional languages to be “created” at run time (by filling
in values of free variables). This capability is very powerful.

• Today we will look at examples of higher-order functions:

• Simple examples

• Currying and uncurrying

• map and fold right

• Representing dictionaries as functions

• (There are a lot more examples in this lecture than we will
get to in class; use the others to study for the midterm.)

CS 421 — Class 19, 3/28/13 — 1



Substitution model evaluation rules
(Const) Const x ⇓ Const x (Fun) Fun(a,e) ⇓ Fun(a,e)

(Rec) Rec(f ,Fun(a,e)) ⇓ Fun(a,e[Rec(f ,Fun(a,e))/f ]

(δ) e op e′ ⇓ v OP v′

e ⇓ v
e′ ⇓ v′

(δ) op e ⇓ OP v

e ⇓ v

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ True

e2 ⇓ v

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ False

e3 ⇓ v

(List) [e1, . . ., en] ⇓ [v1, . . ., vn]

e1 ⇓ v1
...

en ⇓ vn

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)

e′ ⇓ v′
e′′[v′/a] ⇓ v

(Let) Let(a,e,e′) ⇓ v′
e ⇓ v
e′[v/a] ⇓ v′

CS 421 — Class 19, 3/28/13 — 2



Simple examples
• add = fun x -> fun y -> x+y (Type: )

(add 3) 4 ⇓

CS 421 — Class 19, 3/28/13 — 3



Simple examples (cont.)
• apply_to_10 = fun f -> f 10 (Type: )

(apply_to_10 add) 4 ⇓

CS 421 — Class 19, 3/28/13 — 4



Simple examples (cont.)
• double = fun f -> fun x -> f (f x) (Type: )

add6 = double (add 3)

add6 5 ⇓

CS 421 — Class 19, 3/28/13 — 5



Simple examples (cont.)
• compose = fun f -> fun g -> fun x -> f (g x)

(Type: )

double = fun f -> compose f f

add6 = double (add 3)

add6 ⇓

CS 421 — Class 19, 3/28/13 — 6



Simple examples (cont.)
• add6 5 ⇓

CS 421 — Class 19, 3/28/13 — 7



Currying

• Functions of type τ → τ ′ → τ ′′ (curried) and τ ∗ τ ′ → τ ′′

(uncurried) cannot be used interchangeably:

add = fun x -> fun y -> x+y;; (Type: )

let add_unc = fun p -> fst p + snd p;; (Type: )

let use_curried = fun g -> g 3 4;; (Type: )

let use_uncurried = fun g -> g(3,4);; (Type: )

use_curried add;;

use_uncurried add;;

use_curried add_unc;;

use_uncurried add_unc;;

CS 421 — Class 19, 3/28/13 — 8



Currying (cont.)

• Can define functions curry and uncurry:

let add_unc = fun p -> fst p + snd p;;

let use_curried = fun g -> g 3 4;;

let curry = fun f -> fun x -> fun y -> f(x,y)

use_curried (curry add_unc);;

Type of curry:

CS 421 — Class 19, 3/28/13 — 9



Currying (cont.)
let add x y = x + y;;

let use_uncurried g = g(3,4);;

let uncurry = (* Type: (’a -> ’b -> ’c) -> ’a*’b -> ’c *)

use_uncurried (uncurry add);;

CS 421 — Class 19, 3/28/13 — 10



map

• The most famous of all higher-order functions:

let rec map f lis = if lis=[] then []

else (f (hd lis)) :: map f (tl lis);;

• map (fun x->x+1) [1;2;3]

• let incrBy n lis = map (fun x -> x+n) lis

• let incrBy n = map (fun x -> x+n)

• Type of map?

CS 421 — Class 19, 3/28/13 — 11



map exercises

• addpairs: (int * int) list → int list

• appendString: string → string list → string list concatenates the first

argument to the end of every string in the second argument

• incrall: int list list → int list list increments every element of every list in

its argument

CS 421 — Class 19, 3/28/13 — 12



fold right

• Usually called reduce, but called fold_right in OCaml:

let rec fold_right (f:’a->’b->’b) (lis:’a list) (z:’b) : ’b

= if lis=[] then z else f (hd lis) (fold_right f (tl lis) z)

• fold_right (fun s s’ -> s @ s’) ["a"; "b"; "c"] ""

• fold_right (fun x y -> x+y) [3;4;5] 0

• fold_right (fun x y -> x::y) [3;4;5] []

• let h f lis = fold_right (fun x y -> (f x)::y) lis []

CS 421 — Class 19, 3/28/13 — 13



Dictionaries as functions

• Define a “dictionary” to be a function from strings to ints.
Consider this definition of the basic operations:

type dictionary = (string * int) list

let emptyDict = []

let rec lookup k d = if d=[] then -1

else if k = fst (hd d) then snd (hd d)

else lookup k (tl d)

let add k v d = (k,v) :: d

CS 421 — Class 19, 3/28/13 — 14



Dictionaries as functions

• Define the characteristic function of a dictionary d to be
fun k -> lookup k d.

• What are the characteristic functions of these dictionaries:

• emptyDict

• add "a" 3 emptyDict

• add "b" 4 (add "a" 3 emptyDict)

• add "a" 5 (add "b" 4 (add "a" 3 emptyDict))

CS 421 — Class 19, 3/28/13 — 15



Dictionaries as functions

• Can represent dictionaries directly as characteristic functions:

type dictionary = string -> int

let emptyDict = fun k -> -1

let rec lookup k d = d k

let add k v d = fun k’ -> if k’=k then v else d k’

• lookup "a" (add "a" 3 emptyDict) ⇓

CS 421 — Class 19, 3/28/13 — 16



Dictionaries as functions

• lookup "a" (add "b" 4 (add "a" 3 emptyDict)) ⇓

CS 421 — Class 19, 3/28/13 — 17



Dictionaries as functions (v. 2)

• Returning -1 when a name is not in the dictionary is not such
a good plan. Suppose lookup in the list representation above
were redefined this way:

let rec lookup k d = if d=[] then raise NotBoundException

else if k = fst (hd d) then snd (hd d)

else lookup k (tl d)

• Define emptyDict, lookup, and add in the characteristic
function representation.

CS 421 — Class 19, 3/28/13 — 18



Dictionaries as functions (v. 3)

• Another approach to handling the unbound name issue is to
use the “option” type in OCaml:

type ’a option = Some of ’a | None

• lookup in the list representation, using int option:

let rec lookup k d = if d=[] then None

else if k = fst (hd d) then Some (snd (hd d))

else lookup k (tl d)

• Define emptyDict, lookup, and add in the characteristic
function representation.

CS 421 — Class 19, 3/28/13 — 19



More h-o function examples

• Define the following functions, and give their types:

• reverse args takes a curried function of two arguments
and returns the function that takes its arguments in the
opposite order. E.g.

let sub x y = x-y;;

(reverse_args sub) 4 3;; (* returns -1 *)

let reverse_args =

Type:

CS 421 — Class 19, 3/28/13 — 20



More h-o function examples

• fix snd takes an uncurried function, and a value for
its second argument, and returns a function of the first
argument. Give the type of fix snd, and define it using
curry and reverse args.

let div (x, y) = x/y;;

let halve = fix_snd div 2;; (* returns -1 *)

halve 10;; (* returns 5 *)

let fix_snd f v =

Type:

CS 421 — Class 19, 3/28/13 — 21



Representing sets as functions

• Implementing a “set of int” data type means defining a rep-
resentation “type intset = something”, and operations like:

• let emptyset = something

• let member (i:int) (s:intset) : bool = something

• let add (i:int) (s:intset) : intset = something

The implementation is correct if it behaves in a “set-like”
way, e.g. member 3 emptyset = false, member 3 (add 4 (add

3 emptyset)) = true, etc.

• In functional languages, a set can be represented by its
characteristic function:

type intset = int -> bool

CS 421 — Class 19, 3/28/13 — 22



Representing sets as functions
type intset = int -> bool

let emptyset : intset =

let member (n:int) (s:intset) : bool =

let add (n:int) (s:intset) : intset =

CS 421 — Class 19, 3/28/13 — 23



Representing sets as functions
(cont.)

let union (s1:intset) (s2:intset) : intset =

let intersection (s1:intset) (s2:intset) : intset =

let remove (n:int) (s:intset) : intset =

let complement (s:intset) : intset =

let intsAbove (n:int) : intset =

CS 421 — Class 19, 3/28/13 — 24



Wrap-up

• Today we discussed higher-order functions, by going through
examples.

• We did this because some of these functions are useful, and
because they will help you understand more complicated uses
of higher-order functions.

• What to do now:

• MP9

• Use examples in this lecture to study for exam

• Review session: Sunday, 7pm, 1404 SC

CS 421 — Class 19, 3/28/13 — 25


