Lecture 19 - Higher-order functions

- Functional languages to be "created" at run time (by filling in values of free variables). This capability is very powerful.
- Today we will look at examples of higher-order functions:
- Simple examples
- Currying and uncurrying
- map and fold_right
- Representing dictionaries as functions
- (There are a lot more examples in this lecture than we will get to in class; use the others to study for the midterm.)

Substitution model evaluation rules

(Const) Const $\mathrm{x} \Downarrow$ Const \times
$(\operatorname{Rec}) \operatorname{Rec}(f, \operatorname{Fun}(a, e)) \Downarrow \operatorname{Fun}(a, e[\operatorname{Rec}(f, \operatorname{Fun}(a, e)) / f]$
(δ) e op $e^{\prime} \Downarrow v O P v^{\prime}$
$e \Downarrow v$
$e^{\prime} \Downarrow v^{\prime}$
(If) If $\left(e_{1}, e_{2}, e_{3}\right) \Downarrow v$
$e_{1} \Downarrow$ True
$e_{2} \Downarrow v$
(List) $\left[e_{1}, \ldots, e_{n}\right] \Downarrow\left[v_{1}, \ldots, v_{n}\right]$
$e_{1} \Downarrow v_{1}$
\vdots
$e_{n} \Downarrow v_{n}$
(Fun) $\operatorname{Fun}(a, e) \Downarrow \operatorname{Fun}(a, e)$
$(\delta) o p e \Downarrow O P v$
$e \Downarrow v$
(If) If $\left(e_{1}, e_{2}, e_{3}\right) \Downarrow v$ $e_{1} \Downarrow$ False $e_{3} \Downarrow v$
(App) $e e^{\prime} \Downarrow v$
$e \Downarrow \operatorname{Fun}\left(a, e^{\prime \prime}\right)$ $e^{\prime} \Downarrow v^{\prime}$
$e^{\prime \prime}\left[v^{\prime} / a\right] \Downarrow v$
(Let) Let $\left(a, e, e^{\prime}\right) \Downarrow v^{\prime}$

$$
e \Downarrow v
$$

$$
e^{\prime}[v / a] \Downarrow v^{\prime}
$$

Simple examples

add $=$ fun $x \rightarrow$ fun $y \rightarrow x+y$
(Type:
(add 3) $4 \Downarrow$

Simple examples (cont.)

apply_to_10 = fun f \rightarrow f 10
(Type:
(apply_to_10 add) $4 \Downarrow$

Simple examples (cont.)

double $=$ fun f fun $x \rightarrow f(f x) \quad$ (Type:
add6 $=$ double (add 3)
add6 $5 \Downarrow$

Simple examples (cont.)

```
compose = fun f -> fun g -> fun x -> f (g x)
```

(Type:
double $=$ fun $f->$ compose $f f$
add6 = double (add 3)
add6 \Downarrow

Simple examples (cont.)

add6 $5 \Downarrow$

Currying

- Functions of type $\tau \rightarrow \tau^{\prime} \rightarrow \tau^{\prime \prime}$ (curried) and $\tau * \tau^{\prime} \rightarrow \tau^{\prime \prime}$ (uncurried) cannot be used interchangeably:

```
add = fun x -> fun y -> x+y;; (Type: )
let add_unc = fun p -> fst p + snd p;; (Type:
let use_curried = fun g -> g 3 4;; (Type:
let use_uncurried = fun g -> g(3,4);; (Type:
use_curried add;;
use_uncurried add;;
use_curried add_unc;;
use_uncurried add_unc;;
```


Currying (cont.)

- Can define functions curry and uncurry:

```
let add_unc = fun p -> fst p + snd p;;
let use_curried = fun g -> g 3 4;;
let curry = fun f -> fun x -> fun y -> f(x,y)
use_curried (curry add_unc);;
```

Type of curry:

Currying (cont.)

let add x y $=\mathrm{x}+\mathrm{y}$;
let use_uncurried $\mathrm{g}=\mathrm{g}(3,4)$; ;
let uncurry $=(*$ Type: ('a -> 'b -> 'c) -> 'a*'b $->$ 'c *)
use_uncurried (uncurry add); ;

map

- The most famous of all higher-order functions:
let rec map f lis $=$ if lis=[] then [] else (f (hd lis)) : : map f (tl lis); ;
- map (fun $x->x+1$) $[1 ; 2 ; 3]$
- let incrBy n lis $=\operatorname{map}(f u n x->x+n)$ lis
- let incrBy $n=\operatorname{map}(f u n x->x+n)$

Type of map?

map exercises

addpairs: (int * int) list \rightarrow int list

- appendString: string \rightarrow string list \rightarrow string list concatenates the first argument to the end of every string in the second argument
- incrall: int list list \rightarrow int list list increments every element of every list in its argument

fold_right

- Usually called reduce, but called fold_right in OCaml:
let rec fold_right (f:'a->'b->'b) (lis:'a list) (z:'b) : 'b

- fold_right (fun s s’ -> s @ s') ["a"; "b"; "c"] ""
- fold_right (fun x y -> x+y) [3;4;5] 0
- fold_right (fun x y -> $\mathrm{x}:$:y) [3;4;5] []
- let h f lis = fold_right (fun x y -> (f x): :y) lis []

Dictionaries as functions

- Define a "dictionary" to be a function from strings to ints. Consider this definition of the basic operations:

```
type dictionary = (string * int) list
let emptyDict = []
let rec lookup k d = if d=[] then -1
    else if k = fst (hd d) then snd (hd d)
    else lookup k (tl d)
let add k v d = (k,v) :: d
```


Dictionaries as functions

- Define the characteristic function of a dictionary d to be fun k -> lookup k d.

What are the characteristic functions of these dictionaries:

- emptyDict
- add "a" 3 emptyDict
- add "b" 4 (add "a" 3 emptyDict)
- add "a" 5 (add "b" 4 (add "a" 3 emptyDict))

Dictionaries as functions

- Can represent dictionaries directly as characteristic functions:
type dictionary = string -> int
let emptyDict $=$ fun $k->-1$
let rec lookup k d = d k
let add k v d = fun k' $->$ if k '=k then v else $d k '$
- lookup "a" (add "a" 3 emptyDict) \Downarrow

Dictionaries as functions

- lookup "a" (add "b" 4 (add "a" 3 emptyDict)) \Downarrow

Dictionaries as functions (v. 2)

- Returning - $\mathbf{1}$ when a name is not in the dictionary is not such a good plan. Suppose lookup in the list representation above were redefined this way:
let rec lookup k d $=$ if $d=[]$ then raise NotBoundException $\begin{aligned} & \text { else if } k=f s t(h d ~ d) \text { then snd (hd d) } \\ & \text { else lookup } k \text { (tl d) }\end{aligned}$
- Define emptyDict, lookup, and add in the characteristic function representation.

Dictionaries as functions (v. 3)

- Another approach to handling the unbound name issue is to use the "option" type in OCaml:

```
type 'a option = Some of 'a | None
```

- lookup in the list representation, using int option:
let rec lookup k d = if $d=[]$ then None

$$
\begin{aligned}
& \text { else if } k=\text { fst (hd d) then Some (snd (hd d)) } \\
& \text { else lookup } k \text { (tl d) }
\end{aligned}
$$

- Define emptyDict, lookup, and add in the characteristic function representation.

More h-o function examples

- Define the following functions, and give their types:
- reverse_args takes a curried function of two arguments and returns the function that takes its arguments in the opposite order. E.g.
let sub x y $=x-y ;$;
(reverse_args sub) 4 3; ; (* returns -1 *)
let reverse_args =

Type:

More h-o function examples

- fix_snd takes an uncurried function, and a value for its second argument, and returns a function of the first argument. Give the type of fix_snd, and define it using curry and reverse_args.

```
    let div (x, y) = x/y;;
    let halve = fix_snd div 2;; (* returns -1 *)
    halve 10;; (* returns 5 *)
```

 let fix_snd f v =
 Type:

Representing sets as functions

- Implementing a "set of int" data type means defining a representation "type intset = something", and operations like:
- let emptyset = something
- let member (i:int) (s:intset) : bool = something
- let add (i:int) (s:intset) : intset = something

The implementation is correct if it behaves in a "set-like" way, e.g. member 3 emptyset $=$ false, member 3 (add 4 (add 3 emptyset)) = true, etc.

- In functional languages, a set can be represented by its characteristic function:
type intset = int -> bool

Representing sets as functions

type intset = int -> bool
let emptyset : intset =
let member (n:int) (s:intset) : bool =
let add (n:int) (s:intset) : intset =

Representing sets as functions (cont.)

let union (s1:intset) (s2:intset) : intset =
let intersection (s1:intset) (s2:intset) : intset =
let remove (n:int) (s:intset) : intset =
let complement (s:intset) : intset =
let intsAbove (n:int) : intset =

Wrap-up

- Today we discussed higher-order functions, by going through examples.
- We did this because some of these functions are useful, and because they will help you understand more complicated uses of higher-order functions.
- What to do now:
- MP9
- Use examples in this lecture to study for exam
- Review session: Sunday, 7pm, 1404 SC

