
Lecture 18 — Interpreter for
MiniOCaml

• To begin a deeper study of functional programming, we’ll
start with interpreters in the style of MPs 6 and 7. First,
we’ll discuss an interpreter based on substitution. After the
midterm, we’ll discuss an environment-based approach.

• Topics we will cover are:

• Anonymous functions

• Language simplifications

• Substitution model (SOS rules)

• MP9

CS 421 — Class 18, 3/26/13 — 1

Functional programming

• Two essential features of functional programming:

• Recursion over lists and trees

• Higher-order functions, a.k.a. first-class functions

• Treat functions the same as other values: pass as
arguments, put into lists and tuples, etc.

• We will concentrate on the latter for the next two

weeks.

CS 421 — Class 18, 3/26/13 — 2

Anonymous functions

• OCaml has a syntactic way of defining functions without
giving them a name:

fun x -> exp

• Denotes a function that takes x to the value of exp (which
presumably contains x).

(fun a -> a*a) 4

let addnl = fun s -> s ^ "\n" in addnl "abc"

let funlist = [fun a -> a+1; fun a -> a*a]

in (hd (tl funlis)) 3

let funpair = (fun x -> x+1, fun y -> y+3)

in (fst funpair) 4 + (snd funpair) 5

let rec fac = fun x -> if x=0 then 1 else x * fac (x-1) in fac 5

CS 421 — Class 18, 3/26/13 — 3

Exercises with anonymous functions
• Define a list of three functions: the first adds 1 to any integer; the second doubles any

integer; and the third triples any integer. Then apply the second function to 4:

let funlis =

[; ;]

in () 4

• Transform the following expression to the form let rec length = ... , and remove
pattern-matching:

let rec length lis = match lis with [] -> 0 | h::t -> 1 + length t

in length [1;2;3]

CS 421 — Class 18, 3/26/13 — 4

Substitution semantics

• The application of an anonymous function to its argument
can be described easily in an SOS rule:

(fun x -> e) e′ ⇓ v

e′ ⇓ v′

e[v′/x] ⇓ v

where e[v′/x] means “replace all free occurrences of x in e by
v′.” (“Free” means not introduced by a let or fun construct
within e)

CS 421 — Class 18, 3/26/13 — 5

Substitution semantics examples

• (fun x -> x+x) (3+4)

• (fun x -> hd x + 1) (tl [3;4;5])

CS 421 — Class 18, 3/26/13 — 6

Multi-argument functions
• Here is the obvious extension of the application rule to

functions of two arguments:

(fun x y -> e) e′ e′′ ⇓ v

e′ ⇓ v′

e′′ ⇓ v′′

e[v′/x][v′′/y] ⇓ v

(fun x y -> x*y) (3+4) (1+2)

CS 421 — Class 18, 3/26/13 — 7

Multi-arg functions unnecessary

• Instead of the 2–argument rule, use two rules:

e e′ ⇓ v fun x -> e ⇓ fun x -> e

e ⇓ fun x -> e′

e′ ⇓ v′

e′[v′/x] ⇓ v

• Now evaluate:

((fun x -> (fun y -> x*y)) (3+4)) (1+2)

CS 421 — Class 18, 3/26/13 — 8

Simplifying OCaml

• What we have just shown is that multi-argument func-

tions are unnecessary — they’re syntactic sugar. Similarly,
applying functions to multiple arguments (except for built-in
operations like addition) is unnecessary.

• Anonymous functions allow another simplification: Rewrite
let f x = e in e′ as let f = fun x -> e in e′. Now ev-

ery let expression has the form let x = e in e′.

• (We will have to deal with recursion separately.)

CS 421 — Class 18, 3/26/13 — 9

Evaluation by substitution

• In this model of evaluation, we just simplify expressions.
There is no set of “values” distinct from expressions (as there
was in the interpreters for MiniJava). Instead, expressions
that are simple enough play the role of values.

• To be more precise, these are the expressions considered
“simple enough” to be values.

• All constants — ints, floats, strings, true, false

• Lists and tuples — [v1, . . ., vn] or (v1, . . ., vn) — so long

as v1, . . ., vn are values.

• fun x -> e — regardless of what e is

• If e ⇓ v, then v is a value. (e must be a closed expression.)

CS 421 — Class 18, 3/26/13 — 10

Values (cont.)

• Non-values are terms that should be further simplified: if

and let expressions, applications, binary or unary terms with
built-in operators (+, hd, etc.).

• What about variables — how are they evaluated?

CS 421 — Class 18, 3/26/13 — 11

SOS rules for evaluation
i ⇓ (i an integer constant)

e1 + en ⇓

List [e1; . . .; en] ⇓

CS 421 — Class 18, 3/26/13 — 12

Rules for evaluation by substitution
(cont.)

if e1 then e2 then e3) ⇓

if e1 then e2 then e3) ⇓

fun x -> e ⇓

CS 421 — Class 18, 3/26/13 — 13

Rules for evaluation by substitution
(cont.)

e1 e2 ⇓

let x = e in e′ ⇓

CS 421 — Class 18, 3/26/13 — 14

Substitution model evaluation rules
(Const) Const x ⇓ Const x (Fun) Fun(a,e) ⇓ Fun(a,e)

(Rec) Rec(f ,Fun(a,e)) ⇓ Fun(a,e[Rec(f ,Fun(a,e))/f]

(δ) e op e′ ⇓ v OP v′

e ⇓ v
e′ ⇓ v′

(δ) op e ⇓ OP v

e ⇓ v

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ True

e2 ⇓ v

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ False

e3 ⇓ v

(List) [e1, . . ., en] ⇓ [v1, . . ., vn]

e1 ⇓ v1
...

en ⇓ vn

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)

e′ ⇓ v′
e′′[v′/a] ⇓ v

(Let) Let(a,e,e′) ⇓ v′
e ⇓ v
e′[v/a] ⇓ v′

CS 421 — Class 18, 3/26/13 — 15

Examples of evaluation by
substitution

let x = 3 in x+1

(fun x -> x+1) 3

CS 421 — Class 18, 3/26/13 — 16

Examples of evaluation by
substitution

((fun x -> (fun y -> x+y)) 3) 4

let f = fun x -> fun y -> x+y

in let g = f 1

in g 2

CS 421 — Class 18, 3/26/13 — 17

Substitution — e[v/x]

• Definition of substitution needs to be given precisely — see
MP9. However, its meaning is intuitively clear: e[v/x] means
to replace all occurrences of x in e by v. Just remember that
if e contains a subexpression that binds x (a let or fun), then
leave that subexpression alone.

CS 421 — Class 18, 3/26/13 — 18

Recursion

• The rules we’ve given do not handle let rec. We will
introduce a new type of expression (not actually in OCaml)
to handle this:

rec f e

where e is always a fun expression.

• Rewrite let rec f x = e in e′ as

let f = rec f (fun x -> e) in e′

• Add an SOS axiom for rec:

rec f (fun x -> e) ⇓ fun x -> e[rec f (fun x -> e)/f]

CS 421 — Class 18, 3/26/13 — 19

Example of evaluation by
substitution

let map = fun f -> Rec(map1, fun lis -> if lis=[] then []

else (f (hd lis)) :: map1 (tl lis))

in map (fun x->x+1) [1;2;3]

CS 421 — Class 18, 3/26/13 — 20

MP9: Interpret MiniOCaml
• Like OCaml, but without: pattern-matching; mutual recur-

sion (“and”); type definitions (only built-in types — ints,
floats, bools, strings, pairs, lists)

• Concrete syntax of MiniOCaml:
exp → exp binary-operation exp | unary-operation exp

| INTEGER LITERAL | FLOAT LITERAL | STRING LITERAL | TRUE | FALSE
| LBRACK explis1 RBRACK | LPAREN explis2 RPAREN | LET def IN exp
| IDENT | IF exp THEN exp ELSE exp | LET REC def IN exp | exp exp
| FUN IDENT RIGHTARROW exp

def → IDENT args EQ exp

args → ε | args IDENT

binary-operation → COMMA | EQ | LT | GT | NEQ | ANDAND | etc.
unary-operation → NOT | HD | TL | FST | SND | etc.
explis1 → list of exp’s separated by semicolons

explis2 → list of exp’s separated by commas

CS 421 — Class 18, 3/26/13 — 21

Abstract syntax of MiniOCaml

• The abstract syntax incorporates the simplifications we gave.

type exp =

Operation of exp * binary_operation * exp

| UnaryOperation of unary_operation * exp

| Var of string | StrConst of string | IntConst of int

| FloatConst of float | True | False

| List of exp list | Tuple of exp list

| If of exp * exp * exp | App of exp * exp

| Let of string * exp * exp

| Fun of string * exp

| Rec of string * exp

and binary_operation = Semicolon | Comma | Equals | LessThan

| GreaterThan | NotEquals | Assign | And | Or

| IntPlus | IntMinus | IntDiv | IntMult

| FloatPlus | FloatMinus | FloatDiv | FloatMult

| StringAppend | ListAppend

and unary_operation = Not | Head | Tail | Fst | Snd

CS 421 — Class 18, 3/26/13 — 22

MP 9 — Interpreter for
dynamically-typed MiniOCaml

• We will provide lexer/parser and translation to abstract
syntax

• You will write function reduce that maps ASTs to ASTs,
following the SOS rules.

• As in earlier MPs, we will provide precise evaluation rules.
(In MP9, SOS rules are given in terms of abstract syntax.)

• You will interpret a dynamically-typed version. of OCaml.

CS 421 — Class 18, 3/26/13 — 23

Wrap-up

• Today we discussed:

• Simplifying OCaml using anonymous functions

• Evaluating expressions by substitution

• MP9

• We discussed them because:

• They are important in understanding how functional languages work,
and in particular, understanding higher-order functions.

• In Thursday’s class, we will:

• Discuss higher-order functions

• What to do now:

• MP9

CS 421 — Class 18, 3/26/13 — 24

