Lecture 16 — Proving loop
correctness

® For many years, computer scientists have studied w
prove programs correct (as opposed to testing for bugs
most important concept in this area is that of an inv:
We will study the notion of a loop invariant, which i
to prove the correctness of loops.

® Topics we will cover are:

¢ Hoare logic
® Loop invariants
® Termination conditions

CS 421 — Class 16, 3/12/13 — 1

From lecture 1: What you will le
this semester

® How to implement programming languages

e Writing lexical analyzers and parsers
e Translating programs to machine language
¢ Implementing run-time systems

® How to write programs in a functional programming lar

® How to formally define languages (including the defi
of type rules and of program execution)

® Key differences between statically-typed languages (e
Java) and dynamically-typed languages (Python, Java!

® Plus a few other things...

CS 421 — Class 16, 3/12/13 — 2

Invariants

® An invariant is a relationship among the variable
program that is always known to hold at a given point
program.

® Example: If L is a doubly-linked list, for each node nd
able from L, if nd.next is not null, then nd — nd.next

® Note that this invariant holds almost everywhere
program, except possibly in the functions that add orr
nodes.

CS 421 — Class 16, 3/12/13 — 3

Invariants (cont.)

® Invariants are absolutely essential in understanding
program works. When you have a bug in a program an
at the values of the variables and say, “Hmm, that v
shouldn’t have that value at this point,” you’re sayin
the program has failed to maintain an invariant th:
assumed it would.

® One type of invariant is a loop invariant. This is a re
ship among the variables in a loop that should always |
the beginning and end of each iteration of the loop (i
not necessary within the loop body).

® Loop invariants can be used to formally prove the corre
of a program that uses loops.

CS 421 — Class 16, 3/12/13 — 4

Hoare triples

® Program correctness is usually formalized using a k
judgment called a Hoare triple (after C.A.R. Hoare):

P{5}tQ

where P and () are assertions involving the variables
program, and S is the program (“S” for “statement”)

® This means: If P is true about the program variables
if S is executed, then) will be true when it finishes.

® Examples:

® = >0{zxz=xz—1}x>0

® &+ —z0Ny=y0ONzx>0ANy>x{y=uyzx } gedlx,y) = gecd(x

CS 421 — Class 16, 3/12/13 — 5

Proving loops: Partial correctne

® Suppose we want to prove a Hoare triple of the form:

P { while (b) {S} } @

® A loop invariant for this loop is a condition / on the pr
variables (like 7 and @) that is always true at the beg
and end of every iteration of 5.

® To prove the above Hoare triple:

® Prove /[is an invariant: b A I { S } 1
® Prove [/ is true at the start: P AN b D 1
® Prove Q is true after the loop: —b AN I > Q

CS 421 — Class 16, 3/12/13 — 6

Proving loops: Termination

® The Hoare triple only proves partial correctness: (

if the loop terminates.

® To prove that a loop terminates, define a function 7’
gram variables — integers. Then prove:

1. For all values of the program variables =, vy, ..., T (xz,y
0.

2. If xg, o, ... are the values of the program variables
start of S and =, v, ... are their values after execu

once, then 7 {(xz,y,...} < T{xo, Yo, .- -)

® Regardless of what 7 is, if these two conditions hol
loop must terminate eventually.

CS 421 — Class 16, 3/12/13 — 7

Loop proving example 1

while (x!=0) {y = y*x; X
Yy = n!
e Invariant I: g - (X+1)- ..+ n
e I is an invariant: Y,- %" Yooon 2%

e I holds at the start: \=n = ('xu\ ~en=1

e (Q holds at the end:c;/ =
e T (xz,y,n) = X

= x-1;}
/,:\‘ s-br‘i' o(‘t’e(‘:h""‘(—
PR AT S

j (XH\'

bet) oo A :(xu-?) =

Y= =]2° ...

® I'(z,y,n} = O [oa‘ kaAQa whan X = O

 T'(x,y,n)y < T(xg, yo,n):

CS 421 — Class 16, 3/12/13 — 8

DV LS

Loop proving example 2

a=1is N b =0 {
while (a !'= [1) { b
Vb = Xlis

b + hd(a); a = tl(a

e Invariant I: | = Zuc — iq

e I is an invariant: _L = 2 lg ’Z«o A
o

L= 1904— ha A, /\C\;ﬂao

=L =L-2 a
e I holds at the start: | -0 =5 bke-S\

e () holds at the end:a;[] =5 b, — S5« = ZL"‘
e T(a,b,lis) = ||

® T'(a,b,lis) = O: Xy‘h\’f o Wt “'J”‘”“)‘ 20

a AQ C’QMM-’

® T (a,b,lis) < T{ag, bo,lis): St “\%d’eﬁ\

-

CS 421 — Class 16, 3/12/13 — 9

Loop proving example 3

a>0ANb>0ANa=xxNb=y
{ while (a !'= b) if (a > b) a = a - b;
xc
else b = b — a; } a = gecd(gd,

e Invarian : ce = cao[v \
. i 2lnwm, =
]C
x ed b= p

‘Q(a b)

e I is an invariant: , - , = 7(1 (m wA)

e I holds at the start: pbhvin conce a= X

e Q holds at the end: a-b = a= jc
(a,b, x,vy) Q H’ “\99 w7f gojﬂlr

] \.o g“'zfr o((
® T'(a,b,xz,y) = 0: &, .
- S)
o umc\\n.y"' ‘j—@°7 if(’/vj’“\

e T(a,b,z,y) < T(ao,bo,x y): Ecthaa

CS 421 — Class 16, 3/12/13 — 10

Loop proving example 4
x=0N1y=01

while (y < n) { y =y + 1; x:=x + y; }
e =1+4+---4+n
e Invariant I: X— ﬁ P

-l A X= 7(0..,}57(- 2.

=y
e I is an invariant: X, = il)\v 7 (_.'

e I holds at the start: l%‘ P)‘?‘7 = g e
e () holds at the end: J = = K= %t
® I'(z,y,n) = N-}

e T'(xz,y,n) = O M&JJ\‘Q’(/ U\@”‘c‘j:’v\

 T'(x,y,n)y < T(xg, yo,n): oL\

CS 421 — Class 16, 3/12/13 — 11

Loop proving example 5

c=0ANy=1ANz=1An=>=>1{
while (z '=n) { y = x +y; X =y — X; z =

} vy = fib(n)
® Imvariant I: Y 8—'\, 2 A U= fer 2 1)
e I is an invariant: J ke (,)+ Yo (=) 7(“5(?*) LFB

X,]E.L («):)-bfl;ﬁ‘o) 7‘1[40 ‘)iffl % N

e I holds at the start%u {=| +\ O=0

e (Q holds at the end./-mm_?’l 2

® I'(z,y,z,n} = O LduK W Ohan M= 2

® T(xayaz7 ‘?’2,) < T(.’Eo, Yo Zo,n): 6&\/‘2@)—4__——«

CS 421 — Class 16, 3/12/13 — 12

Loop proving example 6

x =lIst N y=0+{
while (x !'= []J) { x=+t1 x; vy =y + 1; }
Yy = length(lst)

'
e I is an invariant: 7 = l);H’ 170 Jo J’T) H'Q(KOH

o ad \X\
(at]- |2t

e Invariant I: ‘E} - ,},fl’l .

Cx

e Q holds at the end x=[1=> IL‘H)1)),L‘f"
e T'(x,y,lst) = |7(|)
® T'(x,y,lsty > O« L_o.nﬂ\ ,/ \u‘f" a—LooZa, 2 O

o T(x,y,lst) < T(xo,yo,lst): ObV s

e I holds at the start

CS 421 — Class 16, 3/12/13 — 13

Loop proving example 7

x=Ist N y=1[]{
while (x !'= []) { vy = hd x :: y; x = tl x;
} vy = reverse(lst)

e Invariant I: f&/{/"”e(jj @ X = = it

Wl =, . H 7‘0)
e I is an invariant: % ef_wr(:l)l@((kJ % Je e R 7(0)

e I holds at the start: y=[1=> ,Qvu,j [] —>rwﬂ~j 61-1
e Q holds at the end: x=[) > m Qx —rev

o T(z,y,lst) = |«| Amlj) T >y=

o T (x,y,lst) > 0: ao afnr

® T (x,y,lsty < T(xg,yo,lst): oVt aty

CS 421 — Class 16, 3/12/13 — 14

Hoare logic

® C.A.R. Hoare presented a logic — axioms and r.
inference, similar to SOS rules — for proving Hoare tr

(Assignment) Ple/z| { z = e } P (While) P { while () S } Q
InNb{ S} I

(if PAb > I and P A —b-

(Sequence) P { 5; S} @ (1f) P {if (b) 5, else 5> }
P{S5S } R PAb{S }Q
R{S2 @ PA—b{ S} Q

(Consequence) P { S } @
P {S } @
(if 7 D P and Q" D Q)

CS 421 — Class 16, 3/12/13 — 15

Example of a proof in Hoare’s lo

(If) true { if (x<0) y = -x; else y = x; } y = |z
(Consequence) x<<0{y = -x}y=|x| (z <0 D —zx = |x|)
(Assignment) —x=lz|{y = x} y=|z

(Consequence) r#£0{y =x}y=|z (z £0 D z = |z|)

(Assignment) r=|z|{y = x } y= |z

CS 421 — Class 16, 3/12/13 — 16

Wrap-up

® Today we discussed:

Loop invariants
Partial correctness
Proving termination

Hoare logic
® We discussed them because:
® They can help you understand how to prove programs correct.
® In Thursday’s class, we will:
® Discuss the history of programmming languages
® What to do now:
® HWS8

CS 421 — Class 16, 3/12/13 — 17

