
Lecture 16 — Proving loop
correctness

• For many years, computer scientists have studied ways to
prove programs correct (as opposed to testing for bugs). The
most important concept in this area is that of an invariant.
We will study the notion of a loop invariant, which is used
to prove the correctness of loops.

• Topics we will cover are:

• Hoare logic

• Loop invariants

• Termination conditions

CS 421 — Class 16, 3/12/13 — 1

From lecture 1: What you will learn
this semester

• How to implement programming languages

• Writing lexical analyzers and parsers

• Translating programs to machine language

• Implementing run-time systems

• How to write programs in a functional programming language

• How to formally define languages (including the definitions
of type rules and of program execution)

• Key differences between statically-typed languages (e.g. C,
Java) and dynamically-typed languages (Python, JavaScript)

• Plus a few other things...

CS 421 — Class 16, 3/12/13 — 2

Invariants

• An invariant is a relationship among the variables in a
program that is always known to hold at a given point in the
program.

• Example: If L is a doubly-linked list, for each node nd reach-
able from L, if nd.next is not null, then nd = nd.next.prev.

• Note that this invariant holds almost everywhere in the
program, except possibly in the functions that add or remove
nodes.

CS 421 — Class 16, 3/12/13 — 3

Invariants (cont.)

• Invariants are absolutely essential in understanding why a
program works. When you have a bug in a program and look
at the values of the variables and say, “Hmm, that variable
shouldn’t have that value at this point,” you’re saying that
the program has failed to maintain an invariant that you
assumed it would.

• One type of invariant is a loop invariant. This is a relation-
ship among the variables in a loop that should always hold at
the beginning and end of each iteration of the loop (though
not necessary within the loop body).

• Loop invariants can be used to formally prove the correctness
of a program that uses loops.

CS 421 — Class 16, 3/12/13 — 4

Hoare triples

• Program correctness is usually formalized using a kind of
judgment called a Hoare triple (after C.A.R. Hoare):

P{S}Q

where P and Q are assertions involving the variables in the
program, and S is the program (“S” for “statement”).

• This means: If P is true about the program variables, then
if S is executed, then Q will be true when it finishes.

• Examples:

• x > 0 { x = x− 1 } x ≥ 0

• x = x0 ∧ y = y0 ∧ x > 0 ∧ y > x { y = y-x } gcd(x, y) = gcd(x0, y0)

CS 421 — Class 16, 3/12/13 — 5

Proving loops: Partial correctness

• Suppose we want to prove a Hoare triple of the form:

P { while (b) {S} } Q

• A loop invariant for this loop is a condition I on the program
variables (like P and Q) that is always true at the beginning
and end of every iteration of S.

• To prove the above Hoare triple:

• Prove I is an invariant: b ∧ I { S } I
• Prove I is true at the start: P ∧ b ⊃ I

• Prove Q is true after the loop: ¬b ∧ I ⊃ Q

CS 421 — Class 16, 3/12/13 — 6

Proving loops: Termination

• The Hoare triple only proves partial correctness: Q holds
if the loop terminates.

• To prove that a loop terminates, define a function T : pro-

gram variables → integers. Then prove:

1. For all values of the program variables x, y, . . ., T (x, y, . . .) ≥
0.

2. If x0, y0, . . . are the values of the program variables at the
start of S and x, y, . . . are their values after executing S

once, then T (x, y, . . .) < T (x0, y0, . . .)

• Regardless of what T is, if these two conditions hold, the
loop must terminate eventually.

CS 421 — Class 16, 3/12/13 — 7

Loop proving example 1
x = n ∧ y = 1 {

while (x!=0) {y = y*x; x = x-1;}

} y = n!

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (x, y, n) =

• T (x, y, n) > 0:

• T (x, y, n) < T (x0, y0, n):

CS 421 — Class 16, 3/12/13 — 8

Loop proving example 2
a = lis ∧ b = 0 {

while (a != []) { b = b + hd(a); a = tl(a); }

} b = Σlis

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (a, b, lis) =

• T (a, b, lis) > 0:

• T (a, b, lis) < T (a0, b0, lis):

CS 421 — Class 16, 3/12/13 — 9

Loop proving example 3
a > 0 ∧ b > 0 ∧ a = x ∧ b = y

{ while (a != b) if (a > b) a = a - b;

else b = b - a; } a = gcd(a0, b0)

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (a, b, x, y) =

• T (a, b, x, y) > 0:

• T (a, b, x, y) < T (a0, b0, x, y):

CS 421 — Class 16, 3/12/13 — 10

Loop proving example 4
x = 0 ∧ y = 0 {

while (y < n) { y = y + 1; x:= x + y; }

} x = 1 + · · ·+ n

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (x, y, n) =

• T (x, y, n) > 0:

• T (x, y, n) < T (x0, y0, n):

CS 421 — Class 16, 3/12/13 — 11

Loop proving example 5
x = 0 ∧ y = 1 ∧ z = 1 ∧ n ≥ 1 {

while (z != n) { y = x + y; x = y - x; z = z + 1; }

} y = fib(n)

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (x, y, z, n) =

• T (x, y, z, n) > 0:

• T (x, y, z, n) < T (x0, y0, z0, n):

CS 421 — Class 16, 3/12/13 — 12

Loop proving example 6
x = lst ∧ y = 0 {

while (x != []) { x = tl x; y = y + 1; }

} y = length(lst)

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (x, y, lst) =

• T (x, y, lst) > 0:

• T (x, y, lst) < T (x0, y0, lst):

CS 421 — Class 16, 3/12/13 — 13

Loop proving example 7
x = lst ∧ y = [] {

while (x != []) { y = hd x :: y; x = tl x; }

} y = reverse(lst)

• Invariant I:

• I is an invariant:

• I holds at the start:

• Q holds at the end:

• T (x, y, lst) =

• T (x, y, lst) > 0:

• T (x, y, lst) < T (x0, y0, lst):

CS 421 — Class 16, 3/12/13 — 14

Hoare logic
• C.A.R. Hoare presented a logic — axioms and rules of

inference, similar to SOS rules — for proving Hoare triples.

(Assignment) P [e/x] { x = e } P (While) P { while (b) S } Q
I ∧ b { S } I

(if P ∧ b ⊃ I and P ∧ ¬b ⊃ Q)

(Sequence) P { S1; S2 } Q
P { S1 } R
R { S2 } Q

(If) P { if (b) S1 else S2 } Q
P ∧ b { S1 } Q
P ∧ ¬b { S2 } Q

(Consequence) P { S } Q
P ′ { S } Q′

(if P ⊃ P ′ and Q′ ⊃ Q)

CS 421 — Class 16, 3/12/13 — 15

Example of a proof in Hoare’s logic
(If) true { if (x<0) y = -x; else y = x; } y = |x|
(Consequence) x < 0 { y = -x } y = |x| (x < 0 ⊃ −x = |x|)
(Assignment) −x = |x| { y = -x } y = |x|
(Consequence) x 6< 0 { y = x } y = |x| (x 6< 0 ⊃ x = |x|)
(Assignment) x = |x| { y = x } y = |x|

CS 421 — Class 16, 3/12/13 — 16

Wrap-up

• Today we discussed:

• Loop invariants

• Partial correctness

• Proving termination

• Hoare logic

• We discussed them because:

• They can help you understand how to prove programs correct.

• In Thursday’s class, we will:

• Discuss the history of programming languages

• What to do now:

• HW8

CS 421 — Class 16, 3/12/13 — 17

