
Lecture 15 — Compiling MiniJava,
cont.

• Today we will discuss compilation of some more difficult
constructs (which are not included in MP8).

• While statements

• Short-circuit evaluation of boolean expressions

• Arrays

• Switch statements

• V-tables and objects

CS 421 — Class 15, 3/7/12 — 1

A note on static vs. dynamic typing

• We switched from dynamic typing in MP7 to static typing in
MP8.

• What did we gain by switching to static typing?

• What did we lose?

CS 421 — Class 15, 3/7/12 — 2

Static vs. dynamic typing (cont.)

• Can we compile a dynamically-typed language?

• Consider compilation scheme for e1 + e2

• Did we gain efficiency?

CS 421 — Class 15, 3/7/12 — 3

Compilation schemes
Methods: M il

Statements: S, m il, m′

Expressions: e, loc il

CS 421 — Class 15, 3/7/12 — 4

Compiling while statements
While (e) S, m

[JUMP m′] @ ils @ ile @ [CJUMP loc,m+ 1,m′′],m′′

S, m+ 1 ils, m′

e, loc ile

(where m′′ = m′ + |ile|+ 1)

do S while (e), m

S,

e,

CS 421 — Class 15, 3/7/12 — 5

Evaluation of boolean expressions

• MP7 uses strict evaluation of boolean expressions:

if (e) S1 else S2, m
il @ [CJUMP loc,m + |il| + 1, m′ + 1] @ il1 @ [JUMP m′′] @ il2, m′′

e, loc il

S1, m + |il| + 1 il1, m′

S2, m′ + 1 il2, m′′

x=e, m il @ [MOV(addr x, loc)], m + |il| + 1
(x a variable)

OperationT(e1,bop,e2), loc il1 @ il2 @ [BOP loc,loc1,loc2]
e1, loc1 il1
e2, loc2 il2

CS 421 — Class 15, 3/7/12 — 6

Evaluation of boolean expressions
(cont.)

public int main (int m, int n) {

if (m<n & (m < 10 | 10 < n))

n = 0;

else

n = 1;

return n;

}

0: LESS 3,1,2

LOADIMM 4,10

LESS 5,1,4

LOADIMM 6,10

LESS 7,6,2

OR 8,5,7

AND 9,3,8

CJUMP 9,8,11

8: LOADIMM 3,0

MOV 2,3

JUMP 13

11: LOADIMM 3,1

MOV 2,3

13: RETURN 2

CS 421 — Class 15, 3/7/12 — 7

Short-circuit evaluation of boolean
expressions

• The best way to compile boolean expressions is to avoid
computing the value of the expression.

e, m, t, f 2 il, m′

• Some expressions are compiled very simply:

True, m, t, f sc [JUMP t], m+ 1

False, m, t, f sc [JUMP f], m+ 1

!e, m, t, f sc il, m′

e, m, f , t sc il, m′

CS 421 — Class 15, 3/7/12 — 8

Short-circuit evaluation of boolean
expressions (cont.)

e1&&e2, m, t, f sc

e1||e2, m, t, f sc

If (e) S1 else S2, m

CS 421 — Class 15, 3/7/12 — 9

Short-circuit evaluation of boolean
expressions (cont.)

public int main (int m, int n) {

if (m<n & (m < 10 | 10 < n))

n = 0;

else

n = 1;

return n;

}

0: LESS 3,1,2

CJUMP 3,2,11

2: LOADIMM 4,10

LESS 5,1,4

CJUMP 5,8,5

5: LOADIMM 6,10

LESS 7,6,2

CJUMP 7,8,11

8: LOADIMM 3,0

MOV 2,3

JUMP 13

11: LOADIMM 3,1

MOV 2,3

13: RETURN 2

CS 421 — Class 15, 3/7/12 — 10

Arrays in MJ

• Arrays stored in the heap. Contents are integers — repre-
senting integers, bools, or pointers to heap objects (including
arrays).

• Have instruction (not used in MP8):

ARRAYREF tgt,src,indx: (p, c, s, h, t, r)

-> (p+1, c, s[i/tgt], h, t, r)

• Array indexing:

a[e], loc

CS 421 — Class 15, 3/7/12 — 11

Multi-dimensional arrays in MJ

• A multi-dimensional array is an array that contains pointers
to other arrays.

• Array indexing for multi-dimensional arrays:

e1[e2], loc

CS 421 — Class 15, 3/7/12 — 12

Arrays in C

• Arrays are addresses: a[i] ≡ a + i (where i is multiplied
by the size of a’s elements)

• Multi-dimensional arrays always rectangular, and arranged in
row-major order:

• a is declared as int[10][20]

• address of a[i][j] = a + i*80 + j*4.

CS 421 — Class 15, 3/7/12 — 13

Arrays in C (cont.)

• a is declared as int[10][20][30]

• address of a[i][j][k] = a + i*2400 + j*120 + k*4

• Rule is: address of e1[e2] = address of e1 + (e2 * (size of
elements of e1))

CS 421 — Class 15, 3/7/12 — 14

Array assignment in C

• With arrays, left-hand sides of assignment statements can
be complex expressions.

• A compilation scheme like this one makes no sense:

e1[e2] = e3, m il1 @ il2 @ [MOV loc1,loc2]
e1[e2], loc1 il1

e3, loc2 il2

• Consider a[i] = a[i]. Can’t evaluate both occurrences of
a[i] to the same value!

CS 421 — Class 15, 3/7/12 — 15

Array assignment in C (cont.)

• “l-values” vs. “r-values”

• l-values are values of expressions on left-hand sides of
assignments. They are addresses.

• Need scheme for calculating l-values.

• Compilation of assignment becomes:

e1 = e2, m il1 @ il2 @ [MOVIND loc1,loc2]
e1, loc1 lval il1

e2, loc2 il2

CS 421 — Class 15, 3/7/12 — 16

Switch statements

• Switch statements can be compiled two ways:

• As cascade of if statements.

• As “jump table” — array of locations of the code for each
case; use switch expression as index.

• When should you use one or the other?

CS 421 — Class 15, 3/7/12 — 17

Objects

• Fields: How is inheritance of fields handled in our compiler?

• Methods: How is inheritance, and overriding, of methods
handled in our compiler?

CS 421 — Class 15, 3/7/12 — 18

V-tables

• There is one place in our code where a name appears in the
compiled code: when compiling “new C()”.

• Why is it needed? (Hint: not to determine the size of the
object to be allocated.)

• How can it be eliminated?

CS 421 — Class 15, 3/7/12 — 19

V-tables (cont.)• Draw a table for each class, listing all the methods belonging
to that class (including inherited ones). The order should be
from top of the hierarchy to the bottom.

class B {

void f() {}

void g() {}

}

class C1 extends B {

void h() {}

}

class C2 extends B {

void g() {}

}

class D extends C1 {

void i() {}

void g() {}

}

CS 421 — Class 15, 3/7/12 — 20

Wrap-up

• Today we discussed compilation of:

• While statements

• Boolean expressions (using short-circuit evaluation)

• Arrays

• Objects and inheritance

• We discussed it because:

• These include most of the constructs you will see in most programming
languages.

• What to do now:

• Finish MP8

CS 421 — Class 15, 3/7/12 — 21

