Lecture 14 — MP8: Compiling
MiniJava

@ Interpretive execution — as in MP6 and 7 — is rarely
used in practice because it is inefficient. Instead, programs
are translated to an executable form (machine language or
bytecode) in one step (compilation), and then executed.

® We will compile MiniJava only after type-checking, be-
cause it is a little bit simpler, and more closely follows what
a real Java compiler does.

® Topics

e An abstract machine for MP8
e Compilation rules for MP8

CS 421 — Classes 14, 3/5/12 — 1

Type-checking

® Make sure programs are type-safe

® Insert type-conversion functions wherever type-checker
says they are needed. E.g. transform "abc"+n to
"abc"+converIntToString(n), if n is an integer variable.
After this, every expression has a single type, not determined
at run time (with the exception of classes w/ subclasses).

® Calculate location of each field in an object and each variable
on run-time stack, plus temporary locations for all expressions.

CS 421 — Classes 14, 3/5/12 — 2

Type-checking in MP8

® Check types and add locations, constructing new AST of
type programT:

type programT = ProgramT of (class_declT list)

and class_declT = ClassT of id * id * ((var_kind * var_decl) list)
* (method_declT 1list) * int (* number of fields x*)

and method_declT = MethodT of exp_type * id * (var_decl list)
* (var_decl 1list) * (statementT list) * annExpT * int (* size of stack frame *)

and statementT = BlockT of (statementT list)
| IfT of annExpT * statementT * statementT
| AssignVarT of id * annExpT * int
| AssignFieldT of id * annExpT * int

and annExpT = expT * exp_type * int
and expT = OperationT of annExpT * binary_operation * annExpT | IntegerT of int
| TrueT | FalseT | MethodCallT of annExpT * id * (annExpT list) | ThisT | NewIdT of id

| VarT of id | FieldRef of int | NewIdAlloc of id * int | NotT of annExpT | NullT
| StringT of string | CvtIntToStringT of annExpT | CvtBoolToStringT of annExpT

CS 421 — Classes 14, 3/5/12 — 3

Example

® Frame consists of four integer variables (x, y, z, and w
(locations 1, 2, 3, 4); objects include field s, of type string,
at offset 5. Write statementT for:

z =X+ 3

CS 421 — Classes 14, 3/5/12 — 4

Abstract machine

® Abstract machine for MP8 has stack and heap, as usual.
Stack frame contains integers, which may either be actual
integers, boolean values (0 for false, 1 for true), or heap
addresses; heap contains strings and objects.

® Sample instructions (locations are offsets in stack frame):

® MOV locl,loc2 — move value from loc2 in current frame to locl
® ADD locl,loc2,loc3 — add value in loc2 and value in loc3, and put in location locl

® INT2STRING locl,loc2 — value in loc2 is an int; convert it to a string, put that
string in the heap, and store the address in locl

® INVOKE loc0,f,[locl,...,locn] — loc0...locn are addresses in stack frame. loc0 contains
heap address of an object, which must define, or inherit, a method f. Allocate a new
stack frame (of correct size for f), fill locations 0, 1, ..., n with contents of loc0, locl,

..., locn. Push it on stack, along with current pc. Jump to beginning of code for f.

CS 421 — Classes 14, 3/5/12 — 5

Example of abstract machine code

class Main {
public boolean main (int n) {
return this.is0d4dd(n);

public boolean isOdd (int n) {
boolean b;

if (n == 0)

b = false;
else

b = this.isEven(n - 1);
return b;

public boolean isEven (int n) {
boolean b;

if (n == 0)

b = true;
else

b = this.is0dd(n - 1);
return b;

CS 421 — Classes 14, 3/5/12 — 6

Example of abstract machine (cont.)

class Main
main Main
is0Odd Main
isEven Main
method main in Main (3)

0: INVOKE 0,is0dd,1
LOADRESULT 2
RETURN 2

method is0dd in Main (6)
O: LOADIMM 3,0

EQUAL 4,1,3
CJUMP 4,3,6
3: LOADIMM 3,0
MOV 2,3
JUMP 11
6: LOADIMM 3,1
SUB 4,1,3
INVOKE O0,isEven,4
LOADRESULT 5
MOV 2,5
11: RETURN 2

CS 421 — Classes 14, 3/5/12 — 7

Abstract machine instructions

® Machine has stack and heap and several special registers:

® Code: machine code for the current method

e PC: current address in machine code

e Topofheap: allocation point for next heap item

® Reg0: special register for returning value from method

® Stack is a stack of triples, (env,pc,code), where env is an
array of integers giving the values of args, local variables,
temporary values; pc and code are pc and code from calling
function (to allow for return from this call).

® Heap is list of strings and objects. Each object is a pair
containing a class name and a list of integers.

® Note that values are not tagged.

CS 421 — Classes 14, 3/5/12 — 8

Abstract machine instructions

@ Instructions:

MOV (tgt,src)
SUB(tgt,srcl,src2)
LESS(tgt,srcl,src2)
EQUAL(tgt,srcl,src2)
CJUMP(loc, iloc_t, iloc_f)
NEWSTRING(tgt,strlit)
GETFLD(tgt,srcfld)
NEWARRAY (tgt,szsrc)
INVOKE(rcvr,m,args)

CS 421 — Classes 14, 3/5/12 — 9

(cont.)

LOADIMM(tgt,i)

MULT (tgt,srcl,src2)
AND(tgt,srcl,src2)

JUMP (iloc)
INT2STRING(tgt,src)
CATSTRINGS(tgt,srcl,src2)
PUTFLD(tgtfld, loc)
RETURN(src)

ADD(tgt,srcl,src2)
DIV(tgt,srcl,src2)
OR(tgt,srcl,src2)
JUMPIND(src)
BOOL2STRING(tgt,src)
ARRAYREF (tgt,arr,idx)
NEWOBJECT (tgt,cls,sz)
LOADRESULT (tgt)

Specification of abstract machine

® Specification is given in rules saying how each instruction
changes state.

® State is six items of data: pc, machine code of currently-
executing method, stack, heap, heaptop, and regO. Write
(p,c,s,h,t,r).

® Some rules (when “s” occurs on the right side of a rule, it
refers to the environment of the top stack frame):

MOV tgt,src (p,c,s, h, t,r) — (p+1, c, s[s(src)/tgt], h, t, r)
LOADIMM tgt,i (p,c,s, ht,r) — (p+1, ¢, s[i/tgt], h, t, r)
ADD tgt,srcl,src2 (p,c,s, h, t,r) — (p+1, c, s[s(srcl)+s(src2)/tgt], h, t, r)
INT2STRING tgt,src (p,c,s, h,t,r) — (p+1, c, s[int2str(s(src))/tgt], h, t, r)
CATSTRINGS tgt,srcl,src2 (p,c, s, h, t,r) — (p+1, c, s[t/tgt], h[strl+str2/t], t+1, r)
where h(s(srcl)) = strl and h(s(src2)) = str2
NEWOBJECT tgt,C,i (p,c, s, h,t,r) — (p+1, c, s[t/tgt], h[obj/t], t+1, r)
where obj = Obj(C,[0,0,...,0]) (i times)
PUTFLD i,src (p,c,s, h, t,r) — (p+1, c, s, h[Obj(C,flds[s(src)/i])/s(0)], t, r)

where h(s(0)) = Obj(C,flds)

CS 421 — Classes 14, 3/5/12 — 10

Abstract machine exercises

Suppose the code sequence C' has the following instructions at
locations 10—-12:

LOADIMM 6,3
ADD 5,1,6
MOV 3,5

If the current frame has values: [3,7,2,4,9,21,13,15], give the state
after each instruction:

(10, C, [3,7,2,4,9,21,13,15], h, t, r)
LOADIMM 6,3
ADD 5,1,6

MOV 3,5

CS 421 — Classes 14, 3/5/12 — 11

Compilation

@® As usual, can compile by recursive traversal of AST.

® Will specify compilation with SOS-like rules. “Compilation
judgments” have these forms:

Methods: M ~~ 1l
Statements: S, m ~ il, m’

Expressions: e, [oc ~~ il

CS 421 — Classes 14, 3/5/12 — 12

Compilation of methods

MethodT(typ,f,args,vars,sl,ret,sz) ~

CS 421 — Classes 14, 3/5/12 — 13

Compilation of expressions

IntegerT i, loc ~~
StringT s, loc ~~
TrueT, loc ~~

VarT id, loc ~

NotT e, loc ~~

CS 421 — Classes 14, 3/5/12 — 14

Compilation of expressions (cont.)
OperationT(el,Plus,e2), loc ~~

CvtIntToString e, loc ~~

NewldAlloc(c,sz), loc ~~

CS 421 — Classes 14, 3/5/12 — 15

Compilation of statements

r=e, m ~>

{Sl,...,Sn },mw

if (e) Sp else So, m ~~

CS 421 — Classes 14, 3/5/12 — 16

Method calls

MethodCallT(e0,f,[el,...,en])

CS 421 — Classes 14, 3/5/12 — 17

MP8

® Due next Thursday morning.

® Compilation rules given for same statements and expressions
as in MP7.

® Execution should be the same for all type-correct programs,
except that short-circuit evaluation is not implemented.

CS 421 — Classes 14, 3/5/12 — 18

Wrap-up

® Today we discussed:

® Compilation of MiniJava

® Definition of an abstract machine

® Compilation rules (in SOS style)
® We discussed it because:

® This information will allow you to complete MP8.

® What to do now:
® MPS8

® The write-up for MP8 is extremely complex, so we urge you to
start early.

CS 421 — Classes 14, 3/5/12 — 19

