
Lecture 13 — Garbage collection,
and miscellaneous

• Modern “dynamic” languages — including not only scripting
languages, but also Java, OCaml, etc. — rely on automatic
memory management. Knowing the basic methods of doing
this is important for implementing these languages.

• Automatic memory management

• Non-reachable heap nodes

• Reference-counting

• Garbage collection via mark-and-sweep

• Garbage collection via stop-and-copy

• Start with a couple of miscellaneous topics...

CS 421 — Class 13, 2/28/12 — 1



Compiler structure

• Compilers don’t usually translate directly from AST to native
machine code.

• IR = “intermediate representation” (often a simplified ma-
chine language)

• MI = “machine-independent”

• Code gen. incorporates machine-dependent optimization

CS 421 — Class 13, 2/28/12 — 2



Machine-independent optimizations

• Reducing total number of operations

• Reducing amount of work in loops

⇒ Optimizations that are likely to increase speed on any ma-
chine.

Source Initial IR Optimized IR

int A[100];

while (j<n) {

x = x + A[i];

j++;

}

L1: r1 = &A

r2 = i*4

r3 = r1+r2

r4 = LOADIND r3

x = x+r4

j = j+1

CMP j,n

JMPIFLESS L1

r1 = &A

r2 = i*4

r3 = r1+r2

r4 = LOADIND r3

L1: x = x+r4

j = j+1

CMP j,n

JMPIFLESS L1

CS 421 — Class 13, 2/28/12 — 3



Compilation targets: Real vs.
abstract machines

• Traditional: Compile to target machine code

• Java/C#: Compile to virtual (i.e. fake) machine code (JVM
or CLR/CIL)

• Execute by interpreting that machine, or

• Translate to native machine code at run time (called “just-
in-time compilation”)

• Advantages: portability, security

• Disadvantage: Non-optimal performance (mainly because
optimization process is time-constrained)

• “Virtual machine code” is also called bytecode or sometimes
bitcode.

CS 421 — Class 13, 2/28/12 — 4



Machine-dependent optimization

• When translating to native machine code — either at initial
compilation time or at “just-in-time” compilation time —
want to generate most efficient code.

• Machine-dependent optimization = optimizations that ex-
ploit features of target machine such as registers, pipeline,
special instructions

• Register allocation

• Instruction selection

• Instruction scheduling

CS 421 — Class 13, 2/28/12 — 5



Interpreters vs. compilers

• Traditionally, languages where programs are normally ex-
ecuted interactively — i.e. without producing an explicit
compiled version (Python, Javascript, OCaml, etc.) are said
to be “interpreted.”

• However, this is different from our use of the term “inter-
pret,” which refers to a method of executing programs (the
method we use in MP6 and 7).

• In fact, we cannot know what method of execution these
languages use without looking inside the “interpreter.”

• In practice, all such languages compile to executable form
— usually a virtual machine — internally, because pure
interpreted execution is inefficient.

CS 421 — Class 13, 2/28/12 — 6



Dynamic languages vs. static
languages

• Dynamic: Python, Perl, Ruby, JavaScript

• Static: C, C++, Fortran

• Intermediate: Java, C#, OCaml

• Two primary distinguishing features:

• Dynamic type-checking; tagged values

• Automatic memory management

CS 421 — Class 13, 2/28/12 — 7



Automatic memory management

• Consider this code in OCaml:

let rec append x y = if x=[] then y else hd x :: append (tl x) y

let rec rev l = if l=[] then [] else append (rev (tl l)) @ [hd l]

• Suppose lis is a list of length 10. When rev lis is called,
cells of garbage are created.

• Without a way to reuse these cells, programs would quickly
run out of memory.

• Similar examples can be constructed in Java, Python, or any
other modern language. These languages would be unusable
without automatic memory management.

CS 421 — Class 13, 2/28/12 — 8



Reachability (aka accessibility) of
heap cells

• Data in state is accessible only through variables on stack,
so heap objects are accessible only through pointers on stack.

• Think of heap as a directed graph, with entry points from
the stack.

• The only useful data in heap is what is accessible, directly
or indirectly, from those entry points. Other data is called
garbage. Garbage nodes can never affect computation,
because they can never be seen by the program.

• Automatic memory management attempts to make

garbage cells available for allocation.

CS 421 — Class 13, 2/28/12 — 9



Reference-counting

• Keep free memory areas on a list

• Track number of pointers to every object — every object has
an additional field giving count of in-pointers.

• Adjust count each time a pointer is copied/assigned

• p = q:

• Increment refcnt(*q)

• Decrement refcnt(*p)

• if refcnt(*p)=0 then return memory of p to free list and

decrement refcnt of all objects that *p points to

CS 421 — Class 13, 2/28/12 — 10



Reference-counting (cont.)

• Advantage: Recover memory of an object as soon as the
object becomes non-reachable

• Big disadvantage: Cannot handle cycles in the heap:

CS 421 — Class 13, 2/28/12 — 11



Garbage collection

• Don’t keep track of reachability continually — instead, wait
until memory runs out, then run a program to find all the non-
reachable objects and recover them - a garbage collector.

• Two basic methods (with many variations and combinations):

• Mark-and-sweep

• Stop-and-copy

• Advantage: Handles cyclic structures easily

• Disadvantage: Creates a pause in the calculation while g.c.
algorithm runs

CS 421 — Class 13, 2/28/12 — 12



Mark-and-sweep

• Reserve one bit in each object header, called the reachable

bit

• Start with reachable bit zero in every header

• Traverse reachable data (depth-first search), setting reach-
able bit

• Sweep over entire heap. For each object, if reachable bit is
1, reset it; if it is zero, place that memory chunk on free list.

• Observations:

• Reachable data is not moved

• Reachable data remains spread across memory

• Cost is linear in total size of heap

CS 421 — Class 13, 2/28/12 — 13



Stop-and-copy

• Only half of memory available for the heap is used at any
time; that half is called half-in-use, the other half reserved.

• Half-in-use is divided into used area and free area.

• Allocate memory from top of used area (bottom of free
area). When free area is exhausted, do g.c.

• Garbage collection method:

• Traverse reachable objects, moving each object encoun-
tered to reserved area, allocating sequentially from bottom.

• Complicated part is adjusting pointers.

• Reserved area now becomes half-in-use.

• Advantage: Cost proportion to amount of reachable data.

CS 421 — Class 13, 2/28/12 — 14



Wrap-up

• Today we discussed:

• Compilation to native code or VM

• Compiler optimizations

• Automatic memory management

• We discussed it because:

• Needed to understand how different compilers and run-time systems
work.

• What to do now:

• MP7

• You will not be asked to implement garbage collection.

CS 421 — Class 13, 2/28/12 — 15


