Lecture 11 — Executing MJ
programs

® Once a program has been parsed and transformed to an
AST, even without type-checking, we can execute programs
by interpretation, which involves traversing the AST. For

MPG6, you will write an interpreter for part of MiniJava, using
dynamic typing.

® Evaluating expressions
® Executing statements

® SOS rules for interpretation

CS 421 — Class 11, 2/21/12 — 1



From lecture 1: What you will learn
this semester

® How to implement programming languages

® Writing lexical analyzers and parsers
® Translating programs to machine language

® Implementing run-time systems
® How to write programs in a functional programming language

® How to formally define languages (including the definitions

of tvpe rules and of program execution)
® Key differences between statically-typed languages (e.g. C,
Java) and dynamically-typed languages (Python, JavaScript)

® Plus a few other things...

CS 421 — Class 11, 2/21/12 — 2



Grammar for (almost) MiniJava

Program —> ClassDeclList

ClassDecl —> class id { VarDecllList MethodDeclList }

VarDecl > Type id ;

MethodDecl —-> Type id ( FormalList ) { VarDeclList StmtList return Exp ; }
Formal —> Type id

Type —> int [ 1 | boolean | int | id
Stmtt —> { StmtList } | if ( Exp ) Stmt else Stmt
| while ( Exp ) Stmt | System.out.printin ( Exp ) ;
| id = Exp ; | ida [ Exp 1 = Exp ;
Exp > Exp Op Exp | Exp [ Exp 1 | Exp . length
| Exp . id ( ExpList ) | integer | true | false | id
| this | new int [ Exp ] | new id ( ) | ' Exp | ( Exp )
Op > && | < | <= | == | + | — | =

ExpList —-> Exp ExpRest |

ExpRest -> , Exp ExpRest |

FormalList > Type id FormalRest |
FormalRest —> , Type id FormalRest |
ClassDeclList = ClassDeclList VarDecl |
MethodDecll.ist = MethodDecllList MethodDecl |
VarDeclList = VarDeclList VarDecl |

StmtList = StmtList Stmt |

CS 421 — Class 11, 2/21/12 — 3



Exercise: simple expression
evaluation

type exp = Operation of exp * binary_operation * exp
| Id of string | Integer of int
and binary_operation = Equal | LessThan | Plus

type value = Int of int | Bool of bool

let rec eval e dict =
( See SFV\U DI
and apply bop vl v2 = Vv A {ern, l—

L{,o MSW)

CS 421 — Class 11, 2/21/12 — 4



Evaluating expressions in MiniJava

©® Abstract syntax of MJ expressions:

type exp = Null | True | False | Integer of int
| String, of string | Id of id | Not of exp
| Operation of exp * binary_ operation * exp
| MethodCall of exp * id * (exp 1listL)
and id = string
and binary_operation = And | Or | LessThan | Plus | Minus
| Multiplication | Division | Equals

For MPG6, this, new (both objects and arrays), and float and
array operations are omitted.

CS 421 — Class 11, 2/21/12 — S



eval for MJ

type value = IntV of int | StringV of string | BoolV of bool | NullV
and state = (varname * value) list

and varname = string

let rec eval (e:exp) (sigma:state) (prog:program) : value = match e with

Null —> NM—uV
| True —> ng{\/ “"I’\A.L
| False —> pre V &,&z,
| Integer i —> 'M\/ 1

| String s -—

(* assume id is in s?:Ze sigma *)

| Ta ia —> &' [ Ld S;

CS 421 — Class 11, 2/21/12 — 6



applyOp for MJ (cont.)
type value = IntV of int | StringV of string | BoolV of bool | NullV

| Operation(el, bop, e€2) > (* for nmon-boolean operations *)
applyOp bop (eval el sigma prog) (eval e2 sigma prog)

let applyOp (bop:binary_ operation) (vi:value) (v2:value) : value =
match bop with

Multiplication -> M"“CL» (V,, V;,’) U/’#\
(l"‘%\/ Ly o) lnt V Ca\ —> 'h)“/(i,’k o)

T patde (v, vy LA
(intAV &), Int V i) > etV (¢, +3)
(EbingV's, | StrivgV ;) > Shing V (5,1 5,))

* o =
CS 421 — CILS 11, 2/21/12 — 7



Kinds of errors

® Type errors, i.e. errors that would be caught by the Java
compiler.

® Operations applied to wrong type of value, e.g. Not 3, if
("abc") ..., etc.

® Method call with wrong number of arguments
® Undefined variables

® Run-time, or value, errors

® Subscript out of bounds

® Division by zero

CS 421 — Class 11, 2/21/12 — 8



eval for MJ, with exceptions

type value = IntV of int | StringV of string | BoolV of bool | NullV
and state = (varname * value) list
and varname = string

exception TypeError of string
exception RuntimebkError of string

| Ia ia -> l'f (br\D{S i d SJM>

'ﬂ\b\ (-pe“"Ck ¢ el Slj/VM)
Cvet o s elre  (rise T“?lo&&'/fbr‘

matel (evs X e Siq prop Wit
\303—6\/ L = Bazre\/ (npt b
| _ > vise ‘TBfeEwa'

CS 421 — Class 11, 2/21/12 — 9



Language definitions

® We will give formal definitions in “structured operational
semantics’” (SOS), just as we did for type-checking. SOS
describes evaluation of an expression as a function of the
evaluation of subexpressions.

® The following notation should be read " expression ¢ evaluates
to value » Iin state o and program 7:

e, o, |} v

® E.g we can write “Integer i,o0,7 | IntV 2”7, meaning: “ex-
pression Integer  evaluates to value IntV z, for any z, in any
state and program.”

® In MPG6, ¢ will be an AST, but in the rules we use concrete
syntax because it looks better.

CS 421 — Class 11, 2/21/12 — 10



Ex: SOS for binary operations

(BinorINT) e + es,o, 7 | IntV (21 + 22)
er1,o,7 | IntV 2,
eo,o, ™l INntV 25
(BINOPINT) eq * €2,0,7 |} IntV (i1 * i)
ellal m U lm‘,\/ i..
e,, o, TW lntVV i,
(LEssTHAN) e < ez,o, 7 I} Bd'b"{ V ( L . < ¢ 2—5

el/ f/ 7_‘— \lb \V\-‘:V L.

eL/f/W\ll/ LV\:"V ig_

CS 421 — Class 11, 2/21 /12 — 11



Boolean operations

® Unlike all other operations, | | and && do not always evaluate
both arguments; they are “non-strict.”

® Given SOS rules for ||:

ei||lez, o, I} BoolV true ei|lez, o, v |} BoolV ¢
e,,0,77w | BoolV true e,,0, 7 | BoolV false
e, o, 7T 1 BoolV ¢

fill in clause 1IN eval:

| Operation(el, Or, e2) -> W+0‘~ (ﬂ\/& (l QJM, r‘%B M-’i\
) et

| Bl V flre > nmateh (\f VI:Q-:laiR/Mbrrs -—bm;&_Ty“EW

@® Note that the abseirice of rules for && an
is non-boolean, is significant.
| - vice T, Ev oY

CS 421 — Class 11, 2/21/12 — 12

d ||, when &, or e



Ex: SOS for boolean operations

(ORTRUE) e, ||lez, o, 7 Il BoolV true
€1, 0o, 7 |l BoolV Ltrue

(ORFALSE) e, ||lez, o, 7 |} BoolV ¢
e, o, Tl BoolV false
ez, o, 7T i} BoolV ¢

(ANDFALsSE) e,&&eq, o, 7 |} BoolV false

(ANDTRUE) e1&&es, o, 7 |} BoolV ¢ See /V\F(o Sf—ec

(NoT) le, o, ™ I BoolV (not &)

CS 421 — Class 11, 2/21/12 — 13



Subset of MJ for MMP 6

® MJ programs have the form:

class C [extends BJ] {
< field declarations >
<method declarations

}

// more classes

where method declarations have the form:

<tyvpe> [ (<= parameter declarations > ) {
< local variable declarations >
<-statements_ -
return -—expression’- ;

CS 421 — Class 11, 2/21/12 — 14



Subset of MJ for MP 6 (cont.)

® For MP 6, there are syntactic restrictions, and also some
significant departures from Java semantics.

® Syntactic restrictions:

® One class, which must contain a method named main.
® No fields.

® Only statements are: assignment (simple and array), if, and
block (i.e. statement sequences).

® Expressions related to objects and arrays — new C, this,
eq1lez], new Clel], e.length — are omitted.

® Note: We have left the concrete and abstract syntax alone;
we are just ignoring these parts of it (for this week).

CS 421 — Class 11, 2/21/12 — 15



Subset of MJ for MP 6 (cont.)

® Semantic differences from Java:

® No objects or arrays.

® Type declarations are ignored. (Must be included for syn-
tactic reasons, but have no effect on execution.)

® Dynamic typing: Types are not checked at assignment;
meaning of binary operations is determined by type of value,
not declared type of variables. For example, can write x
= 1; v = x+1; x = "abc"; y = x+1;. First + is integer
addition, second is string concatenation.

CS 421 — Class 11, 2/21/12 — 16



Statements

® You will also need to write function exec: statement — state
—» program —» state to execute some simple statements:

statement = Block of (statement list)
| If of exp * statement * statement
| Assignment of id * exp

let rec exec s sigma prog = match s with
Assignment(s, e) >

| IfCe,st,s2) o> VM“"OL\ ({Vkﬁ e STDVM W’\ao) U\‘K

QoA b > A b tlew vl shat s s (rag

eaor e \ e b o T'kafr—c Evisy ‘;"‘C) Sl o



SOS for statements

® Will also use SOS to define exec:

® “s, o, m — o7 means that statement s, if it starts in state

o will change it (by assignment statements) to state o’.

E.=.

"

= 10, [(y,3); (x,4)], program(...) = [(y,3); (x,10)]

{x = 10; y = x}, [(y,3); (x,4)]1, program(...)

= [(y,10); (x,10)]

CS 421 — Class 11, 2/21/12 — 18



Ex: SOS rules for statements

(Srae-+TeT) X = €, o, m = o with v bound to x

(AssicN) { S1; S2; ...; Sn }. o, ™= On

He MP L
\S?ec

(IFr-TRUE) if (e¢) S, else So, o, m — o

(IF-FaLsE) if (&) S, else Sy, o, m = o

CS 421 — Class 11, 2/21/12 — 19



eval for MJ (cont.)

® We return to expressions to consider the one case we skipped:

type value = IntV of int | StringV of string | BoolV of bool | NullV
and state = (varname * value) list
and varname = string

| MethodCall(_, m, args) >

0 Loviruy m
W@Vnﬂa T Vaniak2e YL o wn, ‘?’d‘!"gd
(D Execite Hine body of wn Strhag 10 07 i dhing 0

CS 421 — Class 11, 2/21 /12 — 2

(3 Tvnlnite rehun expr of M g’ rehea fiuy



Wrap-up

® Today we discussed:

® “Interpretation’” — executing a program by traversing its
AST

® Specifying how to interpret programs by giving SOS rules

® We discussed it because:

® Understanding interpretation is a big step toward understanding
dynamically-typed languages. It is also good preparation for compi-
lation.

® What to do now:

® MPO6. Start early! This is a hard MP, and has by far the
most complex write-up.

CS 421 — Class 11, 2/21/12 — 21









