
Lecture 11 — Executing MJ
programs

• Once a program has been parsed and transformed to an
AST, even without type-checking, we can execute programs
by interpretation, which involves traversing the AST. For
MP6, you will write an interpreter for part of MiniJava, using
dynamic typing.

• Evaluating expressions

• Executing statements

• SOS rules for interpretation

CS 421 — Class 11, 2/21/12 — 1

From lecture 1: What you will learn
this semester

• How to implement programming languages

• Writing lexical analyzers and parsers

• Translating programs to machine language

• Implementing run-time systems

• How to write programs in a functional programming language

• How to formally define languages (including the definitions
of type rules and of program execution)

• Key differences between statically-typed languages (e.g. C,
Java) and dynamically-typed languages (Python, JavaScript)

• Plus a few other things...

CS 421 — Class 11, 2/21/12 — 2

Grammar for (almost) MiniJava
Program -> ClassDeclList

ClassDecl -> class id { VarDeclList MethodDeclList }

VarDecl -> Type id ;

MethodDecl -> Type id (FormalList) { VarDeclList StmtList return Exp ; }

Formal -> Type id

Type -> int [] | boolean | int | id

Stmt -> { StmtList } | if (Exp) Stmt else Stmt

| while (Exp) Stmt | System.out.println (Exp) ;

| id = Exp ; | id [Exp] = Exp ;

Exp -> Exp Op Exp | Exp [Exp] | Exp . length

| Exp . id (ExpList) | integer | true | false | id

| this | new int [Exp] | new id () | ! Exp | (Exp)

Op -> && | < | <= | == | + | - | *

ExpList -> Exp ExpRest |

ExpRest -> , Exp ExpRest |

FormalList -> Type id FormalRest |

FormalRest -> , Type id FormalRest |

ClassDeclList = ClassDeclList VarDecl |

MethodDeclList = MethodDeclList MethodDecl |

VarDeclList = VarDeclList VarDecl |

StmtList = StmtList Stmt |

CS 421 — Class 11, 2/21/12 — 3

Exercise: simple expression
evaluation

type exp = Operation of exp * binary_operation * exp

| Id of string | Integer of int

and binary_operation = Equal | LessThan | Plus

type value = Int of int | Bool of bool

let rec eval e dict =

and apply bop v1 v2 =

CS 421 — Class 11, 2/21/12 — 4

Evaluating expressions in MiniJava

• Abstract syntax of MJ expressions:

type exp = Null | True | False | Integer of int

| String of string | Id of id | Not of exp

| Operation of exp * binary_operation * exp

| MethodCall of exp * id * (exp list)

and id = string

and binary_operation = And | Or | LessThan | Plus | Minus

| Multiplication | Division | Equals

For MP6, this, new (both objects and arrays), and float and
array operations are omitted.

CS 421 — Class 11, 2/21/12 — 5

eval for MJ
type value = IntV of int | StringV of string | BoolV of bool | NullV

and state = (varname * value) list

and varname = string

let rec eval (e:exp) (sigma:state) (prog:program) : value = match e with

Null ->

| True ->

| False ->

| Integer i ->

| String s ->

(* assume id is in state sigma *)

| Id id ->

CS 421 — Class 11, 2/21/12 — 6

applyOp for MJ (cont.)
type value = IntV of int | StringV of string | BoolV of bool | NullV

| Operation(e1, bop, e2) -> (* for non-boolean operations *)

applyOp bop (eval e1 sigma prog) (eval e2 sigma prog)

let applyOp (bop:binary_operation) (v1:value) (v2:value) : value =

match bop with

Multiplication ->

Plus ->

CS 421 — Class 11, 2/21/12 — 7

Kinds of errors

• Type errors, i.e. errors that would be caught by the Java
compiler.

• Operations applied to wrong type of value, e.g. Not 3, if

("abc") ..., etc.

• Method call with wrong number of arguments

• Undefined variables

• Run-time, or value, errors

• Subscript out of bounds

• Division by zero

CS 421 — Class 11, 2/21/12 — 8

eval for MJ, with exceptions
type value = IntV of int | StringV of string | BoolV of bool | NullV

and state = (varname * value) list

and varname = string

exception TypeError of string

exception RuntimeError of string

| Id id ->

| Not e ->

CS 421 — Class 11, 2/21/12 — 9

Language definitions

• We will give formal definitions in “structured operational
semantics” (SOS), just as we did for type-checking. SOS
describes evaluation of an expression as a function of the
evaluation of subexpressions.

• The following notation should be read ”expression e evaluates
to value v in state σ and program π:

e, σ, π ⇓ v

• E.g we can write “Integer i, σ, π ⇓ IntV i”, meaning: “ex-
pression Integer i evaluates to value IntV i, for any i, in any
state and program.”

• In MP6, e will be an AST, but in the rules we use concrete
syntax because it looks better.

CS 421 — Class 11, 2/21/12 — 10

Ex: SOS for binary operations
(BinopInt) e1 + e2,σ, π ⇓ IntV (i1 + i2)

e1, σ, π ⇓ IntV i1
e2, σ, π ⇓ IntV i2

(BinopInt) e1 ∗ e2, σ, π ⇓ IntV (i1 ∗ i2)

(LessThan) e1 < e2, σ, π ⇓

CS 421 — Class 11, 2/21/12 — 11

Boolean operations

• Unlike all other operations, || and && do not always evaluate
both arguments; they are “non-strict.”

• Given SOS rules for ||:

e1||e2, σ, π ⇓ BoolV true

e1, σ, π ⇓ BoolV true

e1||e2, σ, π ⇓ BoolV t

e1, σ, π ⇓ BoolV false

e2, σ, π ⇓ BoolV t

fill in clause in eval:
| Operation(e1, Or, e2) ->

• Note that the absence of rules for && and ||, when e1 or e2
is non-boolean, is significant.

CS 421 — Class 11, 2/21/12 — 12

Ex: SOS for boolean operations
(OrTrue) e1||e2, σ, π ⇓ BoolV true

e1, σ, π ⇓ BoolV true

(OrFalse) e1||e2, σ, π ⇓ BoolV t

e1, σ, π ⇓ BoolV false

e2, σ, π ⇓ BoolV t

(AndFalse) e1&&e2, σ, π ⇓ BoolV false

(AndTrue) e1&&e2, σ, π ⇓ BoolV t

(Not) !e, σ, π ⇓ BoolV (not b)

CS 421 — Class 11, 2/21/12 — 13

Subset of MJ for MP 6

• MJ programs have the form:

class C [extends B] {
<field declarations>
<method declarations>

}
// more classes

where method declarations have the form:

<type> f (< parameter declarations >) {
<local variable declarations>
<statements>
return <expression> ;

}

CS 421 — Class 11, 2/21/12 — 14

Subset of MJ for MP 6 (cont.)

• For MP 6, there are syntactic restrictions, and also some
significant departures from Java semantics.

• Syntactic restrictions:

• One class, which must contain a method named main.

• No fields.

• Only statements are: assignment (simple and array), if, and
block (i.e. statement sequences).

• Expressions related to objects and arrays — new C, this,
e1[e2], new C[e], e.length — are omitted.

• Note: We have left the concrete and abstract syntax alone;
we are just ignoring these parts of it (for this week).

CS 421 — Class 11, 2/21/12 — 15

Subset of MJ for MP 6 (cont.)

• Semantic differences from Java:

• No objects or arrays.

• Type declarations are ignored. (Must be included for syn-
tactic reasons, but have no effect on execution.)

• Dynamic typing: Types are not checked at assignment;
meaning of binary operations is determined by type of value,
not declared type of variables. For example, can write x

= 1; y = x+1; x = "abc"; y = x+1;. First + is integer
addition, second is string concatenation.

CS 421 — Class 11, 2/21/12 — 16

Statements

• You will also need to write function exec: statement→ state

→ program → state to execute some simple statements:

statement = Block of (statement list)

| If of exp * statement * statement

| Assignment of id * exp

let rec exec s sigma prog = match s with

Assignment(s, e) ->

| If(e,s1,s2) ->

CS 421 — Class 11, 2/21/12 — 17

SOS for statements

• Will also use SOS to define exec:

• “s, σ, π ⇒ σ′” means that statement s, if it starts in state
σ will change it (by assignment statements) to state σ′.
E.g.
x = 10, [(y,3); (x,4)], program(...) ⇒ [(y,3); (x,10)]

{x = 10; y = x}, [(y,3); (x,4)], program(...)

⇒ [(y,10); (x,10)]

CS 421 — Class 11, 2/21/12 — 18

Ex: SOS rules for statements
(Stmt-List) x = e, σ, π ⇒ σ with v bound to x

(Assign) { S1; S2; . . .; Sn }, σ, π ⇒ σn

(If-True) if (e) S1 else S2, σ, π ⇒ σ′

(If-False) if (e) S1 else S2, σ, π ⇒ σ′

CS 421 — Class 11, 2/21/12 — 19

eval for MJ (cont.)
• We return to expressions to consider the one case we skipped:

type value = IntV of int | StringV of string | BoolV of bool | NullV

and state = (varname * value) list

and varname = string

| MethodCall(_, m, args) ->

CS 421 — Class 11, 2/21/12 — 20

Wrap-up

• Today we discussed:

• “Interpretation” — executing a program by traversing its
AST

• Specifying how to interpret programs by giving SOS rules

• We discussed it because:

• Understanding interpretation is a big step toward understanding
dynamically-typed languages. It is also good preparation for compi-
lation.

• What to do now:

• MP6. Start early! This is a hard MP, and has by far the
most complex write-up.

CS 421 — Class 11, 2/21/12 — 21

