
Lecture 10 — Type-checking
MiniJava

• Once a program has been parsed and transformed to an
AST, some other checks must be made before translation to
executable form. The main check is type-checking. We will
discuss type-checking, and introduce a notation for specifying
type rules that we will use for several other purposes this
semester. Note that type-checking is done only in statically-
typed languages.

• Static typing vs. dynamic typing

• Proof systems to specify type rules

• MiniJava type rules (with and without inheritance)

CS 421 — Classes 10, 2/14/13 — 1



“Context-sensitive syntax”

• A program can be malformed even though it conforms to the
context-free grammar of the language, e.g.

• switch (...) { case 1: ... case 1: ...

• int x; float x; ...

• Before attempting to generate executable code, need to
make sure program is well-formed.

• These types of checks can be performed by the usual recursive
traversal of the AST.

CS 421 — Classes 10, 2/14/13 — 2



Statically- vs. dynamically-typed
languages

• One type of well-formedness check is type-checking, e.g.:

• (new C())+10

• (new C()).x, where class C does not have a field x

• Statically-typed languages check types before attempting
to generate code or execute the program.

• Dynamically-typed languages do not check types before
execution, so type errors only show up during execution.

• How can we tell whether a language is statically or dynami-
cally typed?

CS 421 — Classes 10, 2/14/13 — 3



Statically- vs. dynamically-typed
languages (cont.)

• C — static

• C++ — static

• Java — static

• Python — dynamic

• Javascript — dynamic

• OCaml — static

• Scala — static

• LISP — dynamic

CS 421 — Classes 10, 2/14/13 — 4



Type-checking

• In addition to checking type correctness, a type-checker will
record the type of every name (variable, method, etc.), so
that the correct code can be generated. E.g.

• x+y generates an integer add instruction if x and y are
integers; a floating-point instruction if they are floats; etc.

• Type checkers can record types in two ways:

• Construct a symbol table indexed by class, by class ×
name (for fields and methods), and by class × method ×
name (local variables).

• Change the abstract syntax so that every use of a variable
includes its type; iterate over the AST filling in those types
at every use.

CS 421 — Classes 10, 2/14/13 — 5



Proof systems

• Proof systems are a convenient way to present the type rules
of a language. In effect, they are just a nice notation for
expressing recursive functions on ASTs.

• A proof system is:

• A set of judgments — assertions (true-false statements),
usually presented in some concise mathematical notation.

• A set of axioms — judgments that are known to be true.

• A set of rules of inference of the form: J

J1
..
Jk

asserting that J is true if J1, . . . , Jk are true.

CS 421 — Classes 10, 2/14/13 — 6



Proof systems (cont.)
• Axioms are usually given as patterns that represent an

infinite set of axioms; similarly for rule of inference:

n : int (read: “integer constant n has type int”)

is shorthand for the axioms “0 : int”, “1 : int”, etc.

e1+e2 : int (“expression e1+e2 has type int”)
e1 : int (“if expression e1 has type int”)
e2 : int (“and expression e2 has type int”)

is shorthand for

x+y : int
x : int
y : int

3+f(a) : int
3 : int
f(a) : int

etc.

CS 421 — Classes 10, 2/14/13 — 7



Proof systems (cont.)

• Given a proof system, a proof (of judgment J) is a tree
(rooted at J) where each node is labelled with a judgment.
Leaf nodes are labelled with axioms. An internal node labelled
with judgment J0 just have children labelled J1, . . . , Jk, where
the proof system has a rule of inference inferring J0 from
J1, . . . , Jk.

• A proof tree proves its root judgment because the leaf nodes
are assumed true, and every internal node is proven by its
children (according to a rule of inference).

CS 421 — Classes 10, 2/14/13 — 8



Proof systems for type-checking

• A proof system for type-checking will give an axiom or
rule of inference showing how to type-check expressions or
statements formed from each abstract syntax operator.

• It may have more than one rule for a single abstract syntax
constructor, e.g.

e1 + e2 : int
e1 : int
e2 : int

e1 + e2 : float
e1 : float
e2 : float

CS 421 — Classes 10, 2/14/13 — 9



Proof systems for type-checking
(cont.)

• Any applicable rule can be used. The proof system needs
to be designed so that if two rules are applicable to one
expression, they must not produce conflicting results.

• E.g. e1 + e2 : string
e1 : string

e1 + e2 : string
e2 : string

CS 421 — Classes 10, 2/14/13 — 10



Type-checking rules for MJ

• We give several kinds of judgments. Γ is a type environ-

ment, giving the types of variables.

` π π is a type-correct program
π ` κ κ is a type-correct class in program π

π, Γ ` µ µ a type-correct method in a class whose
fields are given in Γ.

π, Γ ` S S is a type-correct statement, when Γ

gives all variable declarations surrounding
S (fields, parameters, locals)

π, Γ ` e : τ e is a type-correct expression of type τ ,
where Γ gives the types of any variables
occurring in e.

CS 421 — Classes 10, 2/14/13 — 11



Type-checking rules for expressions

π, Γ ` x : Γ(x)

π, Γ ` not e : boolean

π, Γ ` e: boolean

π, Γ ` e1 * e2 : int

π, Γ ` e1: int

π, Γ ` e2: int

π, Γ ` e1 + e2 : int

π, Γ ` e1: int

π, Γ ` e2: int

CS 421 — Classes 10, 2/14/13 — 12



Type-checking rules for expressions

π, Γ ` e1 + e2 : string

π, Γ ` e1: string

π, Γ ` e1 + e2 : string

π, Γ ` e2: string

π, Γ ` e0.f(e1, . . . , en): τ (ignore subclassing for now)

π, Γ ` e0 : C, where class C in π has method
τ f(τ1 x, τ2 y, ...){ ...}

π, Γ ` e1 : τ1

π, Γ ` e2 : τ2

etc.

CS 421 — Classes 10, 2/14/13 — 13



Type-checking rules for statements

π, Γ ` if (e) S1 else S2

π, Γ ` e: boolean

π, Γ ` S1

π, Γ ` S2

π, Γ ` x = e

π, Γ ` e: Γ(x)

CS 421 — Classes 10, 2/14/13 — 14



Type-checking rules for programs
and classes

` π where π = cl1 . . . cln
π ` cl1
π ` cl2
...
π ` cln

π ` class c { fld1 . . . f ldk µ1 . . . µm }
π, Γ0 ` µ1

π, Γ0 ` µ2

...
π, Γ0 ` µm

where Γ0 contains the declarations in fld1 . . . f ldk

CS 421 — Classes 10, 2/14/13 — 15



Type-checking rules for methods

π, Γ ` τ f (args) { S1 . . . Sn return e }
π, Γ′ ` S1

π, Γ′ ` S2

...
π, Γ′ ` Sn

π, Γ′ ` e : τ

where Γ′ contains the declarations in Γ and args

CS 421 — Classes 10, 2/14/13 — 16



Subclasses

• Write C < B if C is B or a descendant of B.

• Rules that take subclasses into account: assignment, method
call, method definition.

• Basic rule of inheritance: Wherever an object of a class C
can be safely used as a receiver of a method, an object of a
descendant class D can also be used safely:

• If the method refers to a field of C, objects of D inherit
that field.

• If the method calls a method f using this as the receiver,
this inherits (or redefines) f .

CS 421 — Classes 10, 2/14/13 — 17



Type-checking rules, with subclasses

π, Γ ` x=e

π, Γ ` e: τ ′

where τ ′=Γ(x) or τ ′ a subclass of Γ(x).

π, Γ ` τ f (args) { S1 . . . Sn return e }
π, Γ′ ` S1

π, Γ′ ` S2

...
π, Γ′ ` Sn

π, Γ′ ` e : τ ′

where Γ′ contains the declarations in Γ and args, and τ ′=τ or

τ ′ a subclass of τ

CS 421 — Classes 10, 2/14/13 — 18



Type-checking rules, with subclasses
(cont.)

π, Γ ` e0.f(e1, . . . , en) : τ

π, Γ ` e0 : C, where class C in π, or a superclass, has
method τ f(τ1 x, τ2 y, ...){ ...}

π, Γ ` e1 : τ1
π, Γ ` e2 : τ2
etc.

π ` class c extends s { fld1 . . . f ldk µ1 . . . µm }
π, Γ0 ` µ1
π, Γ0 ` µ2
...
π, Γ0 ` µm

where Γ0 contains the declarations in fld1 . . . f ldk, and fields

in s and its ancestors

CS 421 — Classes 10, 2/14/13 — 19



Type-correctness theorem

Theorem Suppose ` π. Then when we execute π, there will be
no type errors raised.

• To prove, we need to define precisely what “execute π”
means. We will start to do that next week.

• Note this implies that there is no need to check types at
run time, because any argument to an operator or method
is guaranteed to have the correct type. Dynamically-typed
languages cannot make that guarantee, so types must be
checked at run-time. This is the main reason dynamically-
typed languages are inefficient.

CS 421 — Classes 10, 2/14/13 — 20



Wrap-up
• Today we discussed:

• Using proof systems to specify type rules

• Type rules for MiniJava

• We discussed it because:

• Type-checking is the next step in a compiler for a statically-typed
language like MJ.

• After the mid-term, we will begin to talk about executing
MJ programs. (There will not be an MP on type-checking
MJ, because it is complicated without being interesting.)

• What to do now:

• Mid-term 1 Monday night, 7PM. See web page for correct room.

• Review session for mid-term Sunday night; see web page for time and
location.

CS 421 — Classes 10, 2/14/13 — 21


