
CS 421 — Programming Languages
and Compilers

Welcome!

In today’s class:

• Course intro

• What CS 421 is about
• Class structure

• Brief discussion of programming language history

• Intro to the OCaml programming language

CS 421 — Class 1, 1/15/13 — 1

Course staff
Professor: Sam Kamin

kamin@illinois.edu

TAs: Susannah Johnson
sjohnsn2@illinois.edu

Ted Pacyga
tpacyg2@illinois.edu

Rohan Sharma
sharma27@illinois.edu

• Web: courses.engr.illinois.edu/cs421/sp2013/

• Piazza: piazza.com/illinois/spring2013/cs421

CS 421 — Class 1, 1/15/13 — 2

What you will learn this semester
• How to implement programming languages

• Writing lexical analyzers and parsers
• Translating programs to machine language
• Implementing run-time systems

• How to write programs in a functional programming
language

• How to formally define languages (including the definitions
of type rules and of program execution)

• Key differences between statically-typed languages (e.g. C,
Java) and dynamically-typed languages (Python, JavaScript)

• Plus a few other things...

CS 421 — Class 1, 1/15/13 — 3

Why learn about lexing and
parsing?

Learn basic algorithms for dealing with structured
textual data, applying theory from CS 373:

• DFAs and regular expressions for “lexing”

• Top-down (aka recursive descent) parsing

• Bottom-up (aka LR, aka shift/reduce) parsing

CS 421 — Class 1, 1/15/13 — 4

Why learn about definition and
implementation of conventional

languages?
• Understand standard languages more precisely

• Complete picture of how programs go from keyboard to
execution

• Understand translation from high-level language to
machine language — help understand inefficiencies

• Learn to build language processors (esp. compilers)

• Learn basic concepts for handling structured text data:
abstract syntax; syntax-directed translation

CS 421 — Class 1, 1/15/13 — 5

Why learn about definition,
implementation, and use of

functional languages?
• Functional programming is the major alternative programming

paradigm to imperative/object-oriented programming.

• Functional programming language features are increasingly
appearing in mainstream languages

• Functional programming concepts increasingly used in non-
functional languages, and especially in scripting languages;
easiest to learn them in a functional programming language

CS 421 — Class 1, 1/15/13 — 6

How this class operates
• Lectures 9:30–10:45 TR in 1404 SC

• Usually weekly assignments, due Tuesday at 9:30am

• Programming mostly in OCaml, a functional language

• Each class’s slides put on web day before class; subset of
the slides — the ones containing exercises — printed and
distributed in class

• Two midterms and final (dates t.b.a.)

• Course policies — grade calculations, collaboration/cheating
policy, lateness — given on web

CS 421 — Class 1, 1/15/13 — 7

Classroom pedagogy
• In-class exercises (ungraded) - These are smaller versions of

what you’ll be doing on homeworks and exams.

• Discussion encouraged when doing exercises

• Tablet PCs will be used to help me see what you’re doing,
possibly share with class

CS 421 — Class 1, 1/15/13 — 8

Brief overview of programming
languages

• First high-level language (FORTRAN) developed c. 1958.
Emphasis was on efficiency.

• As computers got faster, and memories grew, languages
became less and less about efficiency, more and more about
programmer productivity.

• Modern language design involves trade-offs among various
issues: efficiency; (short-term) programmer convenience;
(long-term) program maintainability; portability; security;
parallelizability.

CS 421 — Class 1, 1/15/13 — 9

Capsule history of PLs
Conventional O-o Scripting Functional

1957/8 Fortran LISP
1960’s Algol Simula 67
1970’s C Smalltalk ML
1980’s C++, Obj. C
1990’s Java Perl Haskell

JavaScript OCaml
early 2000’s C# Python

Ruby

Recent languages: Scala, Clojure, F#, Lua, Go, ...

Others?

CS 421 — Class 1, 1/15/13 — 10

Programming language features
Traditional, Static o-o Scripting, Mixed
“static” “dynamic”

Examples C, Fortran C++ Python, JS Java, OCaml
Objects?

Automatic
mem. mgt.?

Static types?

Tagged values?

CS 421 — Class 1, 1/15/13 — 11

Down to details...
• MP0 — “due” Thursday 9:30am

• Install OCaml, write simple programs (approx. 1 hr. work)
• Not graded, but uses handin

• MP1 — due Tuesday, 1/22, 9:30am

• Recursive functions on lists in OCaml

• First month of class is on lexing, parsing, type-checking, and
abstract syntax

• Programming assignments in OCaml
• Next two classes: intro to OCaml

CS 421 — Class 1, 1/15/13 — 12

OCaml
• OCaml is a popular functional programming language,

which means

• Calculations performed mainly by writing recursive functions

on lists and trees

• Automatic memory management

• No assignable variables — variables assigned once, never re-

assigned; no while loops

• Higher-order functions (but not until later in semester)

• Also, OCaml makes it very convenient to define and
manipulate abstract syntax trees, which are of crucial
importance to us in this class.

CS 421 — Class 1, 1/15/13 — 13

Interactive use of OCaml
Like Python and Ruby, OCaml can be used by entering expressions and

function definitions interactively, in a “read-eval-print” loop:

~$ ocaml

let pi = 3.14159;;

val pi : float = 3.14159

let circum r = 2.0 *. pi *. r;; (* Use *. for floating pt mult *)

val circum : float -> float = <fun>

circum 8.0;;

- : float = 50.26544

let fac x = if x=0 then 1 else x * fac (x-1);;

Error: Unbound value fac

let rec fac x = if x=0 then 1 else x * fac (x-1);;

val fac : int -> int = <fun>

fac 4;;

- : int = 24

CS 421 — Class 1, 1/15/13 — 14

Interactive use of OCaml (cont.)
let rec binom n m = if m>n then 0

else if m=0 or m=n then 1

else binom (n-1) m + binom (n-1) (m-1);;

val binom : int -> int -> int = <fun>

binom 4 2;;

- : int = 6

#use "defs.ml";; (* defs.ml contains defn of fib *)

val fib : int -> int = <fun>

fib 4;;

- : int = 5

• Function application syntax: justaposition

• Variable and function names must begin with lower-case
letter or underscore; can contain digits or apostrophe.

• No “return” statement: function body is an expression, and
its value is returned.

CS 421 — Class 1, 1/15/13 — 15

Interactive use of OCaml (cont.)
• if-then-else is a conditional expression, not a statement,

like C’s conditional expression (condition ? expr : expr).

• #use must be used with care: if you load a file, then use its
definitions to define some other functions, and then reload
the original file, the functions you defined in the meantime
will still use the old definitions.

• Although no types are given, OCaml is a statically typed
language, like C or Java, unlike Python or JavaScript:

circum 4;;

Error: This expression has type int but an expression was expected of type

float

CS 421 — Class 1, 1/15/13 — 16

Types in OCaml
• OCaml provides powerful built-in types:

• Primitive types: int, float, bool, char, string
• Structured types:

• Homogeneous lists: τ list, where τ is any type

• Heterogeneous tuples: τ1 * τ2 * · · · * τn

• Functions: τ1 -> τ2 -> · · · -> τn

• The class facility allows the definition of new types, as in
Java. However, we will not use classes. There is another
way to define new types — using the type facility — that we
will use heavily. We will discuss that next week.

CS 421 — Class 1, 1/15/13 — 17

Primitive types
• Primitive types — int, float, bool, char, string — are more or

less what you would expect:

• int: 3, 74, -853
• float: 3.0, .012
• bool: true, false
• char: ’a’, ’\n’
• string: "sam I am"

• ... with one quirk: arithmetic operations for floats use a
period (+., *., etc.)

CS 421 — Class 1, 1/15/13 — 18

Primitive types (cont.)
• Comparison operations: =, <, >, <>, <=, >=
• Boolean operations: or or ||, & or &&, not
• String operations: ^ (concatenation); s.[i] (subscript)
• No automatic type conversions; use string_of_int,
int_of_string, float_of_int, etc.
• Various “modules” provide additional operations; these

are loaded by entering open module-name;;.

• String and Str modules have operations on strings.

• Pervasives is a module that is always loaded — you
don’t need to open it.

• Index of modules is linked at the bottom of the online
manual — see “resources” tab in course web page.

CS 421 — Class 1, 1/15/13 — 19

Tuples
• Create “struct” by putting expressions in parentheses

separated by commas:

• (3, 5.0): int * float
• (3, "abc", true): int * string * bool

• Exercise — fill in types:

• (’a’, ’b’) :
• (’a’, ”a”, ’a’) :
• (5, (”a”, ’a’)) :

• Exercise — create a value of the given type:

• : int * (int * float) * string

CS 421 — Class 1, 1/15/13 — 20

Tuples (cont.)
• Use functions fst and snd to get elements of a pair. Only

works for pairs. (We’ll see how to deal with bigger tuples in
next class.)

• Exercise: Write a function to add the elements of an int * int
pair:

• let addelts p =

addelts (3,4);; (* returns 7 *)

CS 421 — Class 1, 1/15/13 — 21

Lists
• Create a list by putting expressions, all of same type, in

square brackets separated by semicolons:

• [3]: int list
• [true; false; true]: bool list
• [[’a’]; [’b’; ’c’; ’d’]; []]: (char list) list
• [3; 4.0]: type error
• [3; [4]]: type error

CS 421 — Class 1, 1/15/13 — 22

Lists (cont.)
• Exercise — fill in types (or flag error):

• [’a’; ’b’] :

• [’a’; ’b’; "c"] :

• [4; int_of_string "34"] :

• [[4]; [5]; []] :

• [(1, 2); (3, 4)] :

• [(1, 2); (3, 4, 5)] :

• [(1, [3]); (4, [5; 6])] :

CS 421 — Class 1, 1/15/13 — 23

Lists (cont.)
• Exercise — create a value of the given type (other than the

empty list):

• : int list

• : (int list) list

• : (int * string) list

• : (string list) list

• : (int * string list) list

• : ((int * string list) list) list

CS 421 — Class 1, 1/15/13 — 24

Lists (cont.)
• Use @ to concatenate lists, :: to “cons” to start of list; load

List module to get functions hd, tl, nth, length, and others:
open List;;

let lis1 = [1; 2; 3];;

val lis1 : int list = [1; 2; 3]

hd lis1;;

- : int = 1

tl lis1;;

- : int list = [2; 3]

4 :: lis1;; (* N.B. non-destructive cons *)

- : int list = [4; 1; 2; 3]

[4] @ lis1;; (* N.B. non-destructive append *)

- : int list = [4; 1; 2; 3]

length lis1;;

- : int = 3

nth lis1 2;;

- : int = 3

CS 421 — Class 1, 1/15/13 — 25

Lists (cont.)
• Exercise: Write a function to compute the sum of the first

two elements of an int list: addfirsttwo [5; 3; 2; 6] = 8.
You can assume the list is of length at least 2:

• let addfirsttwo lis =

• Exercise: Write a function to compute the sum of
the lengths of the first two elements of an (int list)
list: addfirsttwolengths [[5; 3]; [2]; [6; 2; 5; 3]] =
3. You can assume the list is of length at least 2:

• let addfirsttwolengths lis =

CS 421 — Class 1, 1/15/13 — 26

Polymorphic functions
• OCaml detects the types of functions, so that variable and

function types don’t have to be declared.

• But consider:

let revpair p = (snd p, fst p)

• It is legal to write

• revpair (3, 4.0)

• revpair ("abc", true)

• etc.

• In fact, for any types τ and τ ′,

revpair: τ * τ ′ → τ ′ * τ

CS 421 — Class 1, 1/15/13 — 27

Polymorphic functions (cont.)
• OCaml realizes this and assigns revpair a polymorphic type

— a type with “type variables” in it:

let revpair p = (snd p, fst p);;

val revpair : ’a * ’b -> ’b * ’a = <fun>

Read this as “revpair has type α * β → β * α.”

• Similarly, a function may operate on lists of any type. Thus,
length has type α list→ int.

CS 421 — Class 1, 1/15/13 — 28

Polymorphic functions (cont.)
Ex: Write the polymorphic types of the following functions. (You can write either
’a, ’b, etc. or α, β, as you prefer.)

let mktriple p = (fst p, snd p, 3)

let pair_of_first p = (fst p, fst p)

let double_first lis = [hd lis; hd lis]

let pair2list p = [fst p, snd p]

addfirsttwolengths (defined above)

CS 421 — Class 1, 1/15/13 — 29

Wrap-up
• Today we discussed:
• What CS421 is about
• Basic OCaml programming and use of the top level

• We discussed it because:
• It’s good to know why you’re learning this stuff
• We’ll be using OCaml for MPs this semester. And one goal of the class

is for you to learn functional programming.

• In the next class, we will:
• Talk more about OCaml — esp. writing functions on lists.

• What to do now:
• MP0 — not graded, but using OCaml a little will give you a much better

feel for it than listening to me talk about it.

CS 421 — Class 1, 1/15/13 — 30

