
CS 421 Spring 2010 Midterm 2

Wednesday, April 7, 2010

Name

NetID

• You have 75 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 11 pages to the exam. Please verify that you have all 11
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 8

2 12

3 14 + 5 XC

4 15

5 22 + 5 XC

6 15

7 14

Total 100 + 10

1



CS 421 Midterm 2 Name:

1. (8 pts) Fill in the blanks below, giving the names of the various parts of a compiler. (Re-
call that the cylinders represent data and the boxes represent actions (i.e. functions).)

A front-end

B back-end

C lexer

D parser

E AST

F symbol table

G optimization

H code generation

2



CS 421 Midterm 2 Name:

2. (22 pts)

(a) Give the type of the following function: fun f -> fun g -> fun x -> g (f x) x

(α→ β)→ (β → α→ γ)→ α→ γ

(b) Write an OCaml function update such that update f a b is a function that returns b
when given a as input but otherwise behaves the same as f.

let update f a b = fun x -> if x = a then b else f x

(c) Write an OCaml function double that duplicates each element of a list, using fold right
instead of explicit recursion. For example, double [1; 2; 3] = [1; 1; 2; 2; 3; 3]. Remember
that fold right has type (α -> β -> β) -> α list -> β -> β.

let double lis = fold right (fun x y -> x :: x :: y) lis []

(d) Write an OCaml function sum pairs that takes a list of pairs and returns a list containing
the sum of the elements of each pair, using map instead of explicit recursion. For
example, sum pairs [(1, 2); (3, 4); (5, 6)] = [3; 7; 11].

let sum pairs = map (fun (x, y) -> x + y)

3



CS 421 Midterm 2 Name:

(e) (5 pts extra credit) Write an OCaml function maxf that takes a function f and a list lst
and returns a pair (max, index), where max is the largest value produced by applying f
to an element of lst, and index is the index in lst of the element x such that f x = max,
where the first element of the list has index 0. If there are multiple such elements, you
may return the index of any one of them. For example, maxf (fun x -> x + 2) [1; 2; 3]
= (5, 2). You may assume that lst is never empty. You may also assume that f takes
elements of lst and returns only positive integers. Your function should use fold right
instead of explicit recursion.

let maxf f lst = fold right (fun x (m, i) -> if f x > m then (f x, 0) else (m, i+1)) lst (0,0)

4



CS 421 Midterm 2 Name:

3. (15 pts) In homework 9, you defined multisets to be functions of type α -> int; in particular,
you used the definition type ’a multiset = ’a -> int. In that homework, you defined
functions add, member, union, disjointUnion, intersection, remove, filter, and fromList. De-
fine the following additional functions on multisets:

(a) fromSet: ’a set -> ’a multiset, such that fromSet s returns a multiset containing 1 copy
of each element in s. Recall that the set type is defined by type ’a set = ’a -> bool.

let fromSet s = fun x -> if s x then 1 else 0

(b) count: ’a multiset -> ’a list -> int, such that count m lst returns the total number of
occurrences of elements from lst in m. You may assume that lst contains no duplicate
elements.

let count m lst = fold right (+) (map m lst) 0

(c) subtract: ’a multiset -> ’a multiset -> ’a multiset, such that subtract a b has n copies
of the value x if a has p copies and b has q copies and n = p - q. If b has more copies
of x than a, then subtract a b should have 0 copies of x.

let subtract a b = fun x -> max (a x - b x) 0

5


