CS 421 Spring 2011 Midterm 2

Thursday, April 14, 2010

Name	Answer sheet
NetID	

- You have 75 minutes to complete this exam
- This is a closed book exam.
- Do not share anything with other students. Do not talk to other students. Do not look at another student's exam. Do not expose your exam to easy viewing by other students. Violation of any of these rules will count as cheating.
- If you believe there is an error, or an ambiguous question, seek clarification from one of the TAs. You must use a whisper, or write your question out.
- Including this cover sheet, there are 12 pages to the exam. Please verify that you have all 12 pages.
- Please write your name and NetID in the spaces above, and at the top of every page.

Question	Value	Score
1	18	
2	18	
3	$12+5 \mathrm{XC}$	
4	8	
5	$10+5 \mathrm{XC}$	
6	12	
7	12	
8	10	
Total	$\mathbf{1 0 0}+\mathbf{1 0}$	

1. (18 pts) In class, we gave the following translation schemes for translating source programs into an intermediate representation (IR). Each one maps an AST (expression or statement) to a sequence of IR instructions.
$[\mathrm{S}]: \quad$ translate statement S to IR
$[\mathrm{e}]_{\mathrm{t}}$: translate expression e to code that stores value of e in variable t $[\mathrm{e}]_{\mathrm{Lt}, \mathrm{Lf}}$: translate boolean expression e to code that branches to Lt if e is true, or Lf otherwise (the short-circuit evaluation scheme)
The relevant instructions in our intermediate representation were: $x=n ; x=y ; x=y+z$ (for any operation +); JUMP L; and CJUMP x,L1,L2.
Here are some clauses of these translation schemes. Note that temporary variables (t_{i}) and program labels $\left(\mathrm{L}_{\mathrm{i}}\right)$ are created fresh for each use of the translation scheme; we have omitted the calls to "newloc()" and "newlabel()". The last one is an "if-then;" in class, we gave a scheme for "if-then-else."

$$
[\mathrm{x}]_{\mathrm{y}}=\quad \mathrm{y}=\mathrm{x}, \text { if } \mathrm{y} \text { and } \mathrm{x} \text { are different variables }
$$

nothing, if y and x are the same variable
$\left[\mathrm{e}_{1}<\mathrm{e}_{2}\right]_{\mathrm{Lt}, \mathrm{Lf}}=\left[\mathrm{e}_{1}\right]_{\mathrm{t} 1}$
$\left[\mathrm{e}_{2}\right]_{\mathrm{t} 2}$
$\mathrm{t}=\mathrm{t} 1<\mathrm{t} 2$
CJUMP t, Lt, Lf
$\left[\mathrm{e}_{1} \& \& \mathrm{e}_{2}\right]_{\mathrm{Lt}, \mathrm{Lf}}=\quad\left[\mathrm{e}_{1}\right]_{\mathrm{L} 1, \mathrm{Lf}}$
L1: $\left[\mathrm{e}_{2}\right]_{\mathrm{Lt}, \mathrm{Lf}}$
$[$ if $(\mathrm{e}) \mathrm{S}]=\quad[\mathrm{e}]_{\mathrm{L} 1, \mathrm{~L} 2}$
L1: [S]
L2 :
(a) Translate this statement using short-circuit evaluation for the conditional; your answer will include " $[\mathrm{S}]$ ":

$$
[\text { if }(x<y \& \& y<z) S]=
$$

Solution: We will accept either of:

```
        t1 = x t1 = x<y
        t2 = y CJUMP t1,L3,L2
        t3 = t1<t2 L3: t2 = y<z
        CJUMP t3,L3,L2
L3: t4 = y
L1: [S]
r5 = z
L2:
t6 = t4<t5
CJUMP t6,L1,L2
L1: [S]
L2:
```

(b) Give these translation schemes:

Solution:

$$
\begin{array}{ll}
{\left[\mathrm{e}_{1} \| \mathrm{e}_{2}\right]_{\mathrm{Lt}, \mathrm{Lf}}=} & {\left[\mathrm{e}_{1}\right]_{\mathrm{Lt}, \mathrm{~L} 1}} \\
& \mathrm{~L} 1: \\
& {\left[\mathrm{e}_{2}\right]_{\mathrm{Lt}, \mathrm{Lf}}} \\
& \\
{[!\mathrm{e}]_{\mathrm{Lt}, \mathrm{Lf}}=} & \\
&
\end{array}
$$

(c) Give a translation scheme for a "do-while" statement: do S while (e) executes S and tests e, in that order, until e becomes false. do S while (e) =

Solution: We will accept either of:
L1: $\quad[\mathrm{S}]$
L1: $\quad[\mathrm{S}]$
$[\mathrm{e}]_{\mathrm{L} 1, \mathrm{~L} 2}$

L2:

CJUMPt, L1, L2

L2:
2. (18 pts)
(a) Write an OCaml function double, of type (int \rightarrow int) \rightarrow (int \rightarrow int), such that double $f x$ is a function that returns 2 times the result of applying f to x. For example, if incr is the function that increments an integer, then double incr $3=8$.

Solution:

```
let double f = fun x -> 2 * (f x)
```

(b) Write an OCaml function cond_sum, of type (int \rightarrow bool) \rightarrow int list \rightarrow int, such that cond_sum $f l$ returns the sum of the elements of 1 for which f is true. For example, cond_sum (fun $\mathrm{x}->\mathrm{x}>0$) $[1 ; 2 ;-4]=3$. You must use fold_right instead of explicit recursion. Remember that fold_right has type $(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \alpha$ list $\rightarrow \beta \rightarrow$ β.

Solution:

```
let cond_sum f l = fold_right (fun x a -> if f x then x + a else a) l 0
```

(c) Write an OCaml function apply_all such that apply_all $\left[f_{1} ; f_{2} ; \ldots ; f_{n}\right]$ arg returns [($\left.f_{1} \arg \right)$; ($f_{2} \arg$) ; ...; ($f_{n} \arg$)]. For example, apply_all [(fun x -> $\mathrm{x} * 2$) ; (fun $\mathrm{x}->\mathrm{x}+2$)] $1=[2 ; 3]$. You must use map instead of explicit recursion; recall that map has type $(\alpha \rightarrow \beta) \rightarrow \alpha$ list $\rightarrow \beta$ list .

Solution:

let apply_all fl $x=\operatorname{map}(f u n f->f x) f 1$
3. (12 pts +5 XC) In homework 8, you defined sets to be functions of type intset $=$ int $->$ bool. A multiset is a set that can contain multiple copies of an element. Just like sets, multisets are not ordered. We represent multisets with functions, just like sets. A multiset function returns the number of occurrences of the given element. type multiset $=$ int \rightarrow int. Here are a few functions on multisets:

```
(* count: int -> multiset -> int - number of occurrences of an int in a multiset *)
let count n ms = ms n
(* add: int -> multiset -> multiset - adds another copy of an int to a multiset *)
let add n ms = fun x -> if x=n then ms n + 1 else ms x
(* member: int -> multiset -> bool - say whether an int occurs in a multiset *)
let member n ms = ms n > 0
```

Define these functions on multisets:
(a) transform: (int->int) -> multiset \rightarrow multiset. transform $f \mathrm{~ms}$ is the multiset that contains the same elements as ms, but if v is in ms, in transform $f \mathrm{~ms} v$ has f (ms v) elements. For example, transform incr ms adds one occurrence to every element of ms. (If count x ms is zero, it remains zero.)

Solution:

let transform $f \mathrm{~ms}=$ fun $\mathrm{x} \rightarrow$ if member x ms then f (ms x) else 0
or
let transform $f \mathrm{~ms}=$ let $\mathrm{g} \mathrm{x}=\mathrm{if} \mathrm{x}=0$ then 0 else f x
in fun $x \rightarrow g$ (ms x)
(b) filterout: (int -> bool) -> multiset -> multiset. filterout f ms is the same multiset as ms except that for any value v, if $f v$ is true, then it has one fewer occurrence of v than ms does.

Solution:

let filter f ms $=$ fun $v->$ if $m s v>0$ \&\& f ven ms $v-1$ else ms v
(c) (5 XC) maxfromlist: int list -> multiset -> int*int. maxfromlist lis ms returns the element of lis that has the most occurrences in ms, together with the number of occurrences; if lis or ms is empty, it returns $(0,0)$. You must use fold_right.

Solution:

```
let maxfromlist lis ms = fold_right
    (fun x (v,cnt) -> if ms x > cnt then (x, ms x) else (v, cnt))
    lis (0,0)
```

4. (8 pts) In class, we gave a definition of the higher-order function map in Java, i.e. using function objects. In the following, the final line should increment every element of array A. Fill in the blanks to make this work.
Solution:
```
abstract class IntFun {
    abstract int apply(int x);
}
class Incr extends IntFun {
    int apply (int x) { return x+1; }
}
public class Map {
        static void map(IntFun f, int A[]){
            for(int i = 0; i < A.length; i++)
                A[i] = f.apply(A[i]);
        }
        public static void main(String[] args)
        {
            int[] A = {1,2,3,4};
            map(new Incr(), A);
        }
}
```

5. (10 pts $+5 \mathrm{XC})$ We write an interpreter for a language with the following abstract syntax:
```
type expr = ...
type stmt = Assign of id * expr (* id = e *)
| Seq of stmt * stmt (* s1; s2 *)
| If of expr * stmt * stmt (* if e then s1 else s2 *)
| While of expr * stmt (* while e do s *)
| Return (* halt the program *)
```

The interpreter consists of two functions: eval, which evaluates expressions, and exec, which executes statements. The interpreter keeps track of the current state:

```
type state = string -> int (* function from identifier to it's value *)
```

To implement return, we need the interpreter to keep track of an extra bit of information, which indicates whether the code we are executing has returned - in which case, we shouldn't execute it. That is, if we have a sequence of statements $\operatorname{Seq}(\mathrm{s} 1, \mathrm{~s} 2)$, then if s1 returns, s2 should be ignored. Thus, exec has type: exec: stmt -> state -> (state * bool); it executes stmt in state rho and returns a pair (rho', returned) of a new state rho' and a boolean returned, which is true when the program was ended by a Return statement. Here are the first two clauses:
let rec exec stmt rho = match stmt with
| Assign(s, e) \rightarrow (bind s (eval e rho) rho, false)
| Return $\quad->$ (rho, true)
(a) (5 pts) Implement the sequencing operator.

Solution:

```
| Seq(s1, s2) -> let rho', returned = exec s1 rho in
    if returned then (rho', returned) else exec s2 rho'
```

(b) (5 pts) Implement the if operator. (Conditional expressions return 1 for true and 0 for false.)

Solution:

| If(e, s1, s2) -> if (eval e rho = 1) then exec s1 rho else exec s2 rho
(c) (5 XC) Implement the while operator.

Solution:

```
| While(e, s) -> let rec aux rho' =
    if istrue (eval e rho') then
                let rho'', returned \(=\) exec \(s\) rho' in
            if returned then (rho'', returned) else aux rho''
    else (rho', false)
    in aux rho
```

6. (12 pts) Consider the following Java classes:
```
class A
{
    public void f(Object o) { }
    public void g(float f) { }
}
```

```
class B1 extends A
```

class B1 extends A
{
{
public void f(String s) { }
public void f(String s) { }
}
}
class B2 extends A
class B2 extends A
{
{
public void f(Object o) { }
public void f(Object o) { }
public void f(int i) { }
public void f(int i) { }
}

```
}
```

(a) (6 pts) A non-static method call goes through a table of pointers to methods, called a virtual function table, or simply v-table. For example, A's v-table is the following:

Draw B1's v-table and B2's v-table. Mention the method's enclosing class name and arguments as well to avoid ambiguity; e.g., "B1's f (String s)" and "B2's f(int i)". B1's v-table

B2's v-table

\square	\longrightarrow	B2's f (Object 0)
\square	\longrightarrow	A's g(float f)
\square	\longrightarrow	B2's f(int i)

(b) (6 pts) Assume the following variables are defined:

```
String strval = ...; Object objval = ...; int intval = ...;
A v1 = new B1();
B1 v2 = new B1();
A v3 = new B2();
B2 v4 = new B2();
```

For each of the following method calls, write which class's f is invoked at runtime. If a method call does not compile, say so.

v1.f(strval) ; A	v3.f(objval) ; B2
v1.f(objval) ; A	v3.f(intval) ; B2, or compile error
v2.f(strval) ; B1	v4.f(strval) ; B2

7. (12 pts) Use these simplification rules:
(β) (fun $\mathrm{x}->\mathrm{e}$) $\mathrm{v} \Rightarrow \mathrm{e}[\mathrm{v} / \mathrm{x}]$
(let) let $\mathrm{x}=\mathrm{v}$ in $\mathrm{e} \Rightarrow \mathrm{e}[\mathrm{v} / \mathrm{x}]$
($\delta) \quad 1+1 \Rightarrow 2$, etc.
to simplify the following expression to an integer. Label each simplification step with the rule used. Write out all expression in full - do not use "...".) There are eight steps. We have shown the first step.
```
    let f = fun g -> fun x -> g (g x)
    in let incr = fun y -> y+1
    in f incr 0
==>(let) let incr = fun y -> y+1
            in (fun g -> fun x -> g (g x)) incr 0
==>(let) (fun g -> fun x -> g (g x)) (fun y -> y+1) 0
==>(beta) (fun x -> (fun y -> y+1) ((fun y -> y+1) x)) 0
==>(beta) (fun y -> y+1) ((fun y -> y+1) 0)
==>(beta) (fun y -> y+1) (0+1)
==>(delta) (fun y -> y+1) 1
==>(beta) 1+1
==>(delta) 2
```

8. (10 pts) Fill in "true" or "false" for each statement:
false 1. Object-oriented programming is characterized by the evaluation of expressions instead of executing commands.
true 2. In Java, casting a value to an ancestor (i.e., up-casting) is always legal.
false 3. In Java, casting a value to a descendant (i.e., down-casting) is always legal.
false 4. Java objects are stored on the stack.
true 5. Java uses "call-by-value".
true 6. Function overloading in Java is determined statically.
false 7. In Java, calls of the form super. $f()$ are dynamically bound.
false 8 . When non-compacting garbage collection is used, at all times, every heap cell is either reachable or on the free list.
true 9 . When using reference-counting, the counts must be updated whenever a pointer assignment is done.
true 10. Compacting garbage collection can improve memory performance by increasing locality.
