
CS 421 Spring 2011 Midterm 2

Thursday, April 14, 2010

Name Answer sheet

NetID

• You have 75 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 12 pages to the exam. Please verify that you have all 12
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 18

2 18

3 12 + 5 XC

4 8

5 10 + 5 XC

6 12

7 12

8 10

Total 100 + 10

1

CS 421 Midterm 2 Answer Sheet Name:

1. (18 pts) In class, we gave the following translation schemes for translating source programs
into an intermediate representation (IR). Each one maps an AST (expression or statement)
to a sequence of IR instructions.

[S] : translate statement S to IR
[e]t : translate expression e to code that stores value of e in variable t

[e]Lt,Lf : translate boolean expression e to code that branches to Lt if e is true,
or Lf otherwise (the short-circuit evaluation scheme)

The relevant instructions in our intermediate representation were: x = n; x = y; x = y + z
(for any operation +); JUMP L; and CJUMP x,L1,L2.

Here are some clauses of these translation schemes. Note that temporary variables (ti) and
program labels (Li) are created fresh for each use of the translation scheme; we have omitted
the calls to “newloc()” and “newlabel()”. The last one is an “if-then;” in class, we gave a
scheme for “if-then-else.”
[x]y = y = x, if y and x are different variables

nothing, if y and x are the same variable

[e1 < e2]Lt,Lf = [e1]t1
[e2]t2
t = t1 < t2
CJUMP t, Lt, Lf

[e1 && e2]Lt,Lf = [e1]L1,Lf

L1 : [e2]Lt,Lf

[if (e) S] = [e]L1,L2

L1 : [S]
L2 :

(a) Translate this statement using short-circuit evaluation for the conditional; your answer
will include “[S]”:

[if (x < y && y < z) S] =

Solution: We will accept either of:

t1 = x
t2 = y
t3 = t1<t2
CJUMP t3,L3,L2

L3: t4 = y
r5 = z
t6 = t4<t5
CJUMP t6,L1,L2

L1: [S]
L2:

t1 = x<y
CJUMP t1,L3,L2

L3: t2 = y<z
CJUMP t2,L1,L2

L1: [S]
L2:

2

CS 421 Midterm 2 Answer Sheet Name:

(b) Give these translation schemes:

Solution:

[e1 || e2]Lt,Lf = [e1]Lt,L1

L1: [e2]Lt,Lf

[!e]Lt,Lf = [e]Lf,Lt

(c) Give a translation scheme for a “do-while” statement: do S while(e) executes S and
tests e, in that order, until e becomes false.

do S while (e) =

Solution: We will accept either of:

L1: [S]

[e]L1,L2

L2:

L1: [S]

[e]t

CJUMPt, L1, L2

L2:

3

CS 421 Midterm 2 Answer Sheet Name:

2. (18 pts)

(a) Write an OCaml function double, of type (int → int) → (int → int), such that double
f x is a function that returns 2 times the result of applying f to x. For example, if incr
is the function that increments an integer, then double incr 3 = 8.

Solution:

let double f = fun x -> 2 * (f x)

(b) Write an OCaml function cond sum, of type (int → bool) → int list → int, such that
cond sum f l returns the sum of the elements of l for which f is true. For example,
cond sum (fun x -> x > 0) [1;2;-4] = 3. You must use fold right instead of
explicit recursion. Remember that fold right has type (α→ β → β)→ α list → β →
β.

Solution:

let cond_sum f l = fold_right (fun x a -> if f x then x + a else a) l 0

(c) Write an OCaml function apply all such that apply all [f1; f2; . . .; fn] arg re-
turns [(f1 arg); (f2 arg); . . .; (fn arg)]. For example, apply all [(fun x ->
x * 2); (fun x -> x + 2)] 1 = [2; 3]. You must use map instead of explicit re-
cursion; recall that map has type (α→ β)→ α list → β list .

Solution:

let apply_all fl x = map (fun f -> f x) fl

4

CS 421 Midterm 2 Answer Sheet Name:

3. (12 pts + 5XC) In homework 8, you defined sets to be functions of type intset = int ->
bool. A multiset is a set that can contain multiple copies of an element. Just like sets,
multisets are not ordered. We represent multisets with functions, just like sets. A multiset
function returns the number of occurrences of the given element. type multiset = int ->
int. Here are a few functions on multisets:

(* count: int -> multiset -> int - number of occurrences of an int in a multiset *)
let count n ms = ms n

(* add: int -> multiset -> multiset - adds another copy of an int to a multiset *)
let add n ms = fun x -> if x=n then ms n + 1 else ms x

(* member: int -> multiset -> bool - say whether an int occurs in a multiset *)
let member n ms = ms n > 0

Define these functions on multisets:

(a) transform: (int->int) -> multiset -> multiset. transform f ms is the multi-
set that contains the same elements as ms, but if v is in ms, in transform f ms v has
f (ms v) elements. For example, transform incr ms adds one occurrence to every
element of ms. (If count x ms is zero, it remains zero.)

Solution:

let transform f ms = fun x -> if member x ms then f (ms x) else 0

or

let transform f ms = let g x = if x=0 then 0 else f x

in fun x -> g (ms x)

5

CS 421 Midterm 2 Answer Sheet Name:

(b) filterout: (int -> bool) -> multiset -> multiset. filterout f ms is the same
multiset as ms except that for any value v, if f v is true, then it has one fewer occurrence
of v than ms does.

Solution:

let filter f ms = fun v -> if ms v > 0 && f v then ms v - 1 else ms v

(c) (5 XC) maxfromlist: int list -> multiset -> int*int. maxfromlist lis ms
returns the element of lis that has the most occurrences in ms, together with the number
of occurrences; if lis or ms is empty, it returns (0,0). You must use fold right.

Solution:

let maxfromlist lis ms = fold_right
(fun x (v,cnt) -> if ms x > cnt then (x, ms x) else (v, cnt))
lis (0,0)

6

CS 421 Midterm 2 Answer Sheet Name:

4. (8 pts) In class, we gave a definition of the higher-order function map in Java, i.e. using
function objects. In the following, the final line should increment every element of array A.
Fill in the blanks to make this work.

Solution:

abstract class IntFun {
abstract int apply(int x);

}

class Incr extends IntFun {

int apply (int x) { return x+1; }

}

public class Map {
static void map(IntFun f, int A[]){

for(int i = 0; i < A.length; i++)

A[i] = f.apply(A[i]);

}

public static void main(String[] args)
{

int[] A = {1,2,3,4};
map(new Incr(), A);

}
}

7

CS 421 Midterm 2 Answer Sheet Name:

5. (10 pts + 5 XC) We write an interpreter for a language with the following abstract syntax:

type expr = ...
type stmt = Assign of id * expr (* id = e *)
| Seq of stmt * stmt (* s1; s2 *)
| If of expr * stmt * stmt (* if e then s1 else s2 *)
| While of expr * stmt (* while e do s *)
| Return (* halt the program *)

The interpreter consists of two functions: eval, which evaluates expressions, and exec, which
executes statements. The interpreter keeps track of the current state:

type state = string -> int (* function from identifier to it’s value *)

To implement return, we need the interpreter to keep track of an extra bit of information,
which indicates whether the code we are executing has returned — in which case, we shouldn’t
execute it. That is, if we have a sequence of statements Seq(s1, s2), then if s1 returns, s2
should be ignored. Thus, exec has type: exec: stmt -> state -> (state * bool); it
executes stmt in state rho and returns a pair (rho’, returned) of a new state rho’ and a
boolean returned, which is true when the program was ended by a Return statement. Here
are the first two clauses:

let rec exec stmt rho = match stmt with
| Assign(s, e) -> (bind s (eval e rho) rho, false)
| Return -> (rho, true)

(a) (5 pts) Implement the sequencing operator.

Solution:

| Seq(s1, s2) -> let rho’, returned = exec s1 rho in
if returned then (rho’, returned) else exec s2 rho’

8

CS 421 Midterm 2 Answer Sheet Name:

(b) (5 pts) Implement the if operator. (Conditional expressions return 1 for true and 0 for
false.)

Solution:

| If(e, s1, s2) -> if (eval e rho = 1) then exec s1 rho else exec s2 rho

(c) (5 XC) Implement the while operator.

Solution:

| While(e, s) -> let rec aux rho’ =
if istrue (eval e rho’) then
let rho’’, returned = exec s rho’ in
if returned then (rho’’, returned) else aux rho’’

else (rho’, false)
in aux rho

9

CS 421 Midterm 2 Answer Sheet Name:

6. (12 pts) Consider the following Java classes:
class A
{

public void f(Object o) { }
public void g(float f) { }

}

class B1 extends A
{

public void f(String s) { }
}

class B2 extends A
{

public void f(Object o) { }
public void f(int i) { }

}

(a) (6 pts) A non-static method call goes through a table of pointers to methods, called a
virtual function table, or simply v-table. For example, A’s v-table is the following:

−−−−−→ A’s f(Object o)
−−−−−→ A’s g(float f)

Draw B1’s v-table and B2’s v-table. Mention the method’s enclosing class name and
arguments as well to avoid ambiguity; e.g., “B1’s f(String s)” and “B2’s f(int i)”.
B1’s v-table

−−−−−→ A’s f(Object o)
−−−−−→ A’s g(float f)
−−−−−→ B1’s f(String s)

B2’s v-table

−−−−−→ B2’s f(Object o)
−−−−−→ A’s g(float f)
−−−−−→ B2’s f(int i)

(b) (6 pts) Assume the following variables are defined:

String strval = ...; Object objval = ...; int intval = ...;
A v1 = new B1();
B1 v2 = new B1();
A v3 = new B2();
B2 v4 = new B2();

For each of the following method calls, write which class’s f is invoked at runtime. If a
method call does not compile, say so.

v1.f(strval); A v3.f(objval); B2

v1.f(objval); A v3.f(intval); B2, or compile error

v2.f(strval); B1 v4.f(strval); B2

10

CS 421 Midterm 2 Answer Sheet Name:

7. (12 pts) Use these simplification rules:

(β) (fun x -> e) v ⇒ e[v/x]
(let) let x=v in e ⇒ e[v/x]
(δ) 1 + 1 ⇒ 2, etc.

to simplify the following expression to an integer. Label each simplification step with the rule
used. Write out all expression in full — do not use “...”.) There are eight steps. We have
shown the first step.

let f = fun g -> fun x -> g (g x)
in let incr = fun y -> y+1

in f incr 0

==>(let) let incr = fun y -> y+1
in (fun g -> fun x -> g (g x)) incr 0

==>(let) (fun g -> fun x -> g (g x)) (fun y -> y+1) 0

==>(beta) (fun x -> (fun y -> y+1) ((fun y -> y+1) x)) 0

==>(beta) (fun y -> y+1) ((fun y -> y+1) 0)

==>(beta) (fun y -> y+1) (0+1)

==>(delta) (fun y -> y+1) 1

==>(beta) 1+1

==>(delta) 2

11

CS 421 Midterm 2 Answer Sheet Name:

8. (10 pts) Fill in “true” or “false” for each statement:

false 1. Object-oriented programming is characterized by the evaluation of expressions in-
stead of executing commands.

true 2. In Java, casting a value to an ancestor (i.e., up-casting) is always legal.

false 3. In Java, casting a value to a descendant (i.e., down-casting) is always legal.

false 4. Java objects are stored on the stack.

true 5. Java uses ”call-by-value”.

true 6. Function overloading in Java is determined statically.

false 7. In Java, calls of the form super.f() are dynamically bound.

false 8. When non-compacting garbage collection is used, at all times, every heap cell is
either reachable or on the free list.

true 9. When using reference-counting, the counts must be updated whenever a pointer
assignment is done.

true 10. Compacting garbage collection can improve memory performance by increasing
locality.

12

