
CS 421 Spring 2010 Midterm 1

Wednesday, February 24, 2010

Name

NetID

• You have 75 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 17 pages to the exam. Please verify that you have all 17
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10 + 5 XC

9 10

10 10

11 10 XC

Total 100 + 15

1

CS 421 Midterm 1 Name:

1. (10pts) Immediately after each of the following declarations, what is the most general type
of f (use type variables where necessary)?

(a) (1pt) let f = 3.4

(b) (1pt) let f x = x + 2

(c) (1pt) let f x y = if x then y else y *. 2.0

(d) (1pt) let f (x, y) z = (x, y, z)

(e) (1pt) let f (x, y) (a, b) = if x = a then y else b

(f) (2pt)

let rec f x y =
match x with
[] -> y

| a::b -> a::f b y

(g) (3pt)

let f (x, y) =
match x with
[] -> [x; y]

| _::_ -> [y; x]

2

CS 421 Midterm 1 Name:

2. (10pts) Consider the following function:

let rec f xl yl =
match xl with
[] -> yl

| x::xs -> f xs (x::yl)

(a) (4pts) What do the following expressions evaluate to?

i. f [] []

ii. f [] [1; 2; 3]

iii. f [3; 4] [2; 1]

iv. f ["reversed"; "am"; "I"] []

3

CS 421 Midterm 1 Name:

(b) (6pts) Write a function rev : ’a list -> int -> ’a list such that rev xl n re-
turns a list of the first n elements of xl in reverse order, followed by the remaining
elements in their original positions. You can assume that n is between 0 and the length
of xl.

Examples:

rev [1; 2; 3; 4] 2;;
- : int list = [2; 1; 3; 4]
rev [1; 2; 4] 0;;
- : int list = [1; 2; 4]
rev [3; 5; 7] 3;;
- : int list = [7; 5; 3]
rev [3; 8; 9; 2] 3;;
- : int list = [9; 8; 3; 2]

4

CS 421 Midterm 1 Name:

3. (10pts) Write is_square: int -> bool such that is_square n returns true if and only if
n is a square number, that is, there exists an integer m such that n = m ∗m.

Hint: do not worry about efficiency; only correctness counts. You can search for m among
all of the integers from 1 to n.

5

CS 421 Midterm 1 Name:

4. (10pts) Write flatten: ’a list list -> ’a list that appends all of the lists in the given
list of lists. You may not use @, although you may write any helper function you choose (even
one that mimics the functionality of @).

Example:

flatten [[1;2;3]; [4;5]; [8;2;3;4]];;
- : int list = [1;2;3;4;5;8;2;3;4]

6

CS 421 Midterm 1 Name:

5. (10pts) In this question, you will write separate DFAs for lexing integer, hexadecimal, and
octal constants, and then combine them. In each case, you should give a DFA with a start
state, and with every other state labeled either “Error” or the type of the particular token
the DFA is recognizing.

(a) An int is a either the digit ‘0’ by itself, or a digit ‘1’ - ‘9’ followed by zero or more digits
‘0’ - ‘9’. Your states should be labeled Start, Error, or Int.

(b) A hexadecimal constant, or hex, is “0x” followed by a sequence of one or more hexadec-
imal digits (‘0’ - ‘9’, ‘A’ - ‘F’, ‘a’ - ‘f’). Your states should be labeled Start, Error, or
Hex.

(c) An octal constant is ‘0’ followed by a sequence of one or more octal digits (‘0’ - ‘7’).
(Note that a single ‘0’ is not a valid octal constant.) Your states should be labeled Start,
Error, or Octal.

7

CS 421 Midterm 1 Name:

(d) Give a DFA that recognizes ints, hexes and octals. Your states should be labeled Start,
Error, Int, Hex, or Octal.

8

CS 421 Midterm 1 Name:

6. (10pts) Consider the OCaml type token of tokens representing:

• ints

• hexes

• octals

• the operator ‘+’

• the operator ‘*’

given by:

type token = PLUS | TIMES | INT of int | HEX of int | OCTAL of int

Give an ocamllex specification taking strings of ints, floats, hexes, ‘+’s and ‘*’s to lists of
tokens, while ignoring all other characters. You have access to the following functions:

• int of string : string -> int

• hex of string : string -> int

• octal of string : string -> int

Note that hex of string takes in a string in hex form and converts it to an int; likewise for
octal of string.

Example:

3 + 051 * 0x3F

should lex to:

[INTEGER 3; PLUS; OCTAL 41; TIMES; HEX 63]

Please complete the solution started on the following page

9

CS 421 Midterm 1 Name:

Please write your solution to the problem from the previous page here:

let digit = [’0’ - ’9’]
let hexdigit = [’0’ - ’9’, ’A’ - ’F’, ’a’ - ’f’]
let octdigit = [’0’ - ’7’]

rule tokenize = parse

(* add your rules below *)

10

CS 421 Midterm 1 Name:

7. (10pts) Consider the following ambiguous grammar:

S → <float> | S + S | S * S

(a) (1pt) Give a sentence that has two parse trees.

(b) (1pt) Show the two parse trees.

(c) (3pts) Based on those parse trees, show a stack/lookahead configuration where there are
two different actions - either a shift and a reduce, or two different reduces - that would
lead to the two parse trees shown, and say which action leads to which tree.

11

CS 421 Midterm 1 Name:

(d) (5pts) Give a grammar recognizing the same language as the given grammar, but that
is unambiguous and enforces the following:

• * has higher precedence than +
• * is left associative
• + is left associative

12

CS 421 Midterm 1 Name:

8. (10pts + 5pts XC) Consider the following definitions:

exception Parse_failure
type token = LBRACKET | RBRACKET | LPAREN | RPAREN | COMMA | SEMICOLON | INT of int

We want to write a recursive descent parser recognizing the language of lists of pairs of integers
(e.g. [], [(1, 2)], [(1, 2); (3, 4); (0, 1)].)

Note that pair items are separated by a comma and list items are separately by semicolons.

Your parser should have the following signature:

parse : token list -> bool

parse takes in a list of tokens and returns true if the corresponding string is in the language.
If the string is not in the language, parse raises the exception Parse_failure.

(a) (5 pts.) Write a grammar for this language. Make sure it is not left-recursive and
does not require an “obvious” left-factoring (i.e. there are no two productions for any
non-terminal that begin exactly the same).

(b) (5 pts XC) Argue that your grammar is LL(1) by showing that the FIRST sets of right-
hand sides do not overlap. (You can ignore FOLLOW sets, even if your grammar has
ε-productions.)

13

CS 421 Midterm 1 Name:

(c) (5 pts) Write a recursive-descent parser based on this grammar.

14

CS 421 Midterm 1 Name:

9. (10pts) Consider the following grammar:

S → S + T | T
T → <id> | T !

(a) (3pts) Give the parse tree for x+y!

(b) (7pts) Give the entire shift-reduce parse of x+y!, showing every shift and reduce action.
For each reduce action, also give the production being reduced. On the stack, show only
the top node of each tree. We have partially filled in the outline of the parse below,
using exactly as many lines as there are steps:

Action Stack Input

Shift x+y!

Acc S

15

CS 421 Midterm 1 Name:

10. (10pts) True or False

(a) True False OCaml is a statically typed language

(b) True False OCaml employs automatic memory management

(c) True False Any program written in OCaml is guaranteed to terminate,
due to OCaml’s strong type system

(d) True False In OCaml, every element of a tuple must have the same type

(e) True False Every LL(1) grammar is unambiguous

(f) True False Every unambiguous grammar is LL(1)

(g) True False Nested comments can be recognized by a regular expression

(h) True False LR(1) parsers are capable of recognizing any context-free language

(i) True False LR(1) (bottom-up) parsers cannot handle left recursion.

(j) True False The use of let rec instead of let provides a note to the programmer
that a function is recursive, but has no significance to the OCaml
compiler.

16

CS 421 Midterm 1 Name:

11. (10pts) Extra Credit

Write a function counts : ’a list -> (’a * int) list.

counts xl returns a list of n pairs, where n is the number of distinct elements in xl. The
ith pair is (x, j) where x is the ith distinct element of xl (ordering distinct elements of xl by
first occurrence in xl), and j is the total number of times x occurs in xl.

Example:

counts [1; 2; 3; 1; 3; 2; 1; 4];;
- : (int * int) list = [(1, 3); (2, 2); (3, 2); (4, 1)]

17

