
CS 421 Spring 2012 Midterm 1

Tuesday, February 21, 2012

Name

NetID

• You have 70 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are eight pages to the exam. Please verify that you have all
eight pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 18
2 18
3 8
4a 6
4b 15
5 15
6 10
7 10

Total 100

1

CS 421 Midterm 1 Name:

1. (18 pts) Fill in the types of these expressions and functions (some are polymorphic), or write
”type error.” For function definitions, give the type of the function (both argument and result
types):

(a) (4, "4", ’4’)

(b) [3; [3]; 4; [4]]

(c) let f (a,b,c) = a+b

(d) let intvals p = let (a,b) = p in [a+1; hd b]

2. (18 pts) Write the following functions. (You will not need, and should not use, auxiliary
functions.)

(a) revpairs: (α*β) list→ (β*α) list reverses each pair in its argument: revpairs [(1,2);
(3,4)] = [(2,1); (4,3)].

(b) lookup: string → (string * α) list → α returns the value in the second argument that
is associated with the first argument. Think of the second argument as a “dictionary”
mapping names to values. E.g. lookup "i" [("a", 3); ("i", 5)] = 5.

(c) partition: int list → int → (int list * int list) divides its first argument into two lists,
one containing all elements less than its second argument, and the other all the elements
greater than or equal to its second argument. partition [5; 2; 10; 4] 4 = ([2],
[5; 10; 4]).

2

CS 421 Midterm 1 Name:

3. (8 pts) Write a DFA to recognize a simplified form of email addresses. The username part
is a non-empty sequence of lower-case letters and digits. This is followed by the customary
@. The host or domain part consists of lower-case letters separated by periods. Specifically,
it has at least one period, can not have two consecutive periods, can not begin or end with
a period, and has at least two lower-case letters after the last period. Each state should be
labelled as either Email or Error; unlike our examples in class, most of the states will be
labelled Error. (Hint: our solution has a total of seven states.)

4. (20 pts) This is a simplified portion of the abstract syntax of MiniJava:

type statement = Block of (statement list)
| While of exp * statement
| Assignment of id * exp

and exp = Operation of exp * binary_operation * exp
| Id of string | Integer of int

and binary_operation = Equal | LessThan | Plus

(a) (6 pts) Write the expression of type statement representing the abstract syntax of this
statement:

while(x < 5) y = a + b;

3

CS 421 Midterm 1 Name:

(b) (15 pts) Write the function eval : exp → (string * value) list → value, which
evaluates an expression, given that the values of any variables occurring in the expression
are given by the second argument (the “dictionary”). The type value is

type value = Int of int | Bool of bool

For example:

eval (Operation(Id "x", Plus, Integer 10)) [("a", Int 5), ("x", Int 7)]
==> Int 17

You will want to use the function lookup defined in problem 2 above. You can as-
sume that any variables occurring in the expression occur in the dictionary, and that
the expression uses all values in a type-correct way — don’t worry about type errors.
Specifically: < and + only apply to integers; = applies to two bools or two integers.
You must use auxiliary function apply : binary operation → value → value →
value that applies an operation to its arguments (again, assuming the arguments have
the correct type). E.g. apply Plus (Int 3) (Int 7) = Int 10.

let rec eval e dict =

and apply bop v1 v2 =

4

CS 421 Midterm 1 Name:

5. (15 pts) Consider these two expression grammars:

G1

A → B | B * A | B / A
B → C | B + C | B - C
C → id | int

G2

A → id | int | A+A | A-A | A*A | A/A

(a) (8 pts) Draw the parse tree for x+y*10 in G1:

(b) (6 pts) What precedences and associativities are enforced by G1, if any?

(c) (6 pts) Provide ocamlyacc precedence declarations for G2 so that the precedence and
associativity of all operators is the same as those enforced by G1. (For tokens, use: Star,
Slash, Plus, Minus, Id of string, and Int of int.)

5

CS 421 Midterm 1 Name:

6. (10 pts) For this problem, the algorithms for computing FIRST and FOLLOW sets are copied
on the last page of the exam (so you can tear it off).

G3:

S → A C B | C b B | B a
A → d a | B C
B → g | ε
C → h | ε

(a) (5 pts) Perform the FIRST sets calculation on G3. (As usual, fsts0 should be left blank.)
We have filled in the final table (you just have to fill in the intermediate steps).

fsts0:

S

A

B

C

fsts1:

S

A

B

C

fsts2:

S

A

B

C

fsts3:

S

A

B

C

fsts4:

S a, b, d, g, h, •
A d, g, h, •
B g, •
C h, •

(b) (5 pts) Perform the FOLLOW sets calculation on G3. As usual, flws0 is empty except
that the start symbol contains eof .

flws0:

S eof

A

B

C

flws1:

S

A

B

C

flws2:

S

A

B

C

flws3:

S

A

B

C

6

CS 421 Midterm 1 Name:

7. (10 pts) Write a recursive-descent recognizer for the following grammar. We have provided
the FIRST sets; since the grammar has no ε-productions, you do not need FOLLOW sets.

S → id = E | if (E) T
T → S | else S
E → id | int

FIRST(S) = { id, if }
FIRST(T) = { id, if, else }
FIRST(E) = { id, int }

Use the following tokens:

type token = Id of string | Int of int | Equal | LParen | RParen | If | Else

As usual, raise SyntaxError when appropriate.

let rec parseS toklis =

and parseT toklis =

and parseE toklis =

7

CS 421 Midterm 1 Name:

FIRST(G) =
fsts0 = empty table (i.e. maps every A ∈ N to {})
i = 0
repeat { i = i+1; fstsi = empty table

for every production A→ α in G:
fstsi(A) = fstsi(A) ∪ RHSFirst(α, fstsi−1)

} until fstsi = fstsi−1

return fstsi

RHSFirst(X1X2 . . . Xn, fsts) =
if n=0 return {•}
else if X1 ∈ T return { X1 }
else if • 6∈ fsts[X1] return fsts[X1]

else return (fsts[X1]− {•}) ∪ RHSFirst(X2 . . . Xn, fsts)

FOLLOW(G) =
flws0 = table mapping S to { eof }, and every other A ∈ N to {}
i = 0
repeat {

i = i+1; flwsi = flws0

for every B ∈ N :
for every occurrence of B in a production A→ αBβ:

flwsi[B] = flwsi[B] ∪ (FIRST(β)− {•})
if • ∈ FIRST(β) then flwsi[B] = flwsi[B] ∪ flwsi−1[A]

} until flwsi = flwsi−1

return flwsi

8

