Shift-reduce example 1

- $L \rightarrow L ; E \mid E$
$E \rightarrow i d$
Input: x; y

Shift-reduce example 2

- $E \rightarrow E+T \mid T$
$T \rightarrow T * P \mid P$
$P \rightarrow$ id \mid int
Input: $x+10$ * y

Shift-reduce example 3

- Grammar: $E \rightarrow E+E|E * E| i d$

Input: x + y + z
Show a parse tree, and corresponding s / r parse, that represents left-associativity of addition.

Shift-reduce example 3 (cont.)

Grammar: $E \rightarrow E+E|E * E| i d$ Input: x + y + z

Show a parse tree, and corresponding s / r parse, that represents right-associativity of addition.

Dealing with ambiguity (cont.)

For $x * y * z$, consider where the two stack configurations that can occur for the two parse trees differ. What is the correct decision?

Do the same for $x+y * z$:
and for $\mathrm{x} * \mathrm{y}+\mathrm{z}$:

More examples of $S C(G)$

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
 $\mathrm{T} \rightarrow \mathrm{id}$

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{id}
\end{aligned}
$$

