
Exercises using expr

• Show the abstract syntax tree for expression 4+-(7*-8+4):

• Give the OCaml expression of type expr for that tree:

CS 421 — Class 4, 1/26/12 — 4



Exercises using expr (cont.)

• Write the function countPluses: expr → int, which counts
the number of Plus operations in an expr:

let rec countPluses e = match e with
Int i ->

| Plus(e1, e2) ->

| Times(e1, e2) ->

| Negate e ->

CS 421 — Class 4, 1/26/12 — 5



Exercises using expr (cont.)

• Write the function eval: expr → int, which evaluates
its argument, e.g. eval (Times(Negate(Int 5), Int 6)) =
-30.

CS 421 — Class 4, 1/26/12 — 6



Exercises using expr (cont.)

• For a little more practice, consider this slightly different
definition of type expr:

type expr = Int of int | Binop of bop*expr*expr
| Unop of uop*expr

and bop = Plus | Times
and uop = Negate

Define eval for this definition of expr:

CS 421 — Class 4, 1/26/12 — 7



Abstract syntax of OCaml

• Here’s a (partial) abstract syntax for OCaml:

type ocamlexpr = Int of int | Binop of bop * ocamlexpr * ocamlexpr
| Var of string | App of ocamlexpr * ocamlexpr
| Let of def * ocamlexpr | Letrec of def * ocamlexpr

and def = string * string list * ocamlexpr
and bop = Plus | Times

• Write the ocamlexpr corresponding to

let f a = let x = 0 in a+x in f 7

CS 421 — Class 4, 1/26/12 — 8



Ex: Abstract syntax of OCaml
occursin: string → ocamlexpr → bool checks if a variable or function name is

used in an expression (in its scope), e.g.

a occurs in let x = a in ...
a occurs in let x = 0 in a+x
a does not occur in let a = 0 in a
f occurs in let g x = f (x+1) in g 0
f does not occur in let rec f x = f (x+1) in f 0

let rec occursin v e = match e with
Int i ->

| Binop(b, e1, e2) ->

| Var(s) ->

| App(e1, e2) ->

| Let(d, e) ->

| Letrec(d, e) ->

CS 421 — Class 4, 1/26/12 — 9



and exp = Operation of exp * binary_operation * exp
| Array of exp * exp
| Length of exp
| MethodCall of exp * id * (exp list)
| Integer of int
| True
| False
| Id of id
| This
| NewArray of exp_type * exp
| NewId of id
| Not of exp
| Null
| String of string
| Float of float

and binary_operation = And
| Or
| LessThan
| Plus

CS 421 — Class 4, 1/26/12 — 12



Ex: pretty-print expressions

• Write pp : exp → string, that produces a printed version of its argument,

such that, if it were parsed, it would produce the same abstract syntax

tree. (pp stands for “pretty-print”.) Use parentheses freely (even though

some will be unnecessary).

let rec pp_bop binop = match binop with
And -> "&&" | LessThan -> "<" | ...

end rec pp e = match e with
Operation(e1, binop, e2) ->

| Array(e1, e2) ->

|

CS 421 — Class 4, 1/26/12 — 14




