
Type definition exercise

• Given this new type

type PersonalInfo = Address of int * string
| Phone of string | Age of int

define function street: PersonalInfo → string that returns
the street name for an address, and the empty string for any
other kind of value:

CS 421 — Class 3, 1/24/12 — 6

Recursive type definitions

• In this type definition:

type t = C1 [of te1] | . . . | Cn [of ten]

the type expressions tei can contain t, making the type
declaration recursive. This allows for the definition of infinite
data types, such as lists and trees, e.g.

type mylist = Empty | Cons of int * mylist
let list1 = Cons (3, Cons (4, Empty))

• Ex: write the function sum : mylist → int.

CS 421 — Class 3, 1/24/12 — 7

Exercises: Functions on binary trees
type bintree = Empty

| Node of int * bintree * bintree

• Define isLeaf: bintree → bool

• Define sum: bintree → int

CS 421 — Class 3, 1/24/12 — 9

