
CS 421 Spring 2012 Final Exam

Wednesday, May 9, 2012

Name

NetID

• You have 180 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 14 pages to the exam. Please verify that you have all 14
pages. (Page 14 contains no questions, but has definitions for several problems; you can tear
it off for easier reference.)

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 17

2 10

3 10

4 10

5 4

6 7

7 9

8 7

9 10

10 8

11 8

Total 100

1

CS 421 Final Exam Name:

1. (17 pts) A usemap is a dictionary used to keep track of where variables are used; it map
variables to lists of integers, representing line numbers in which the given variable is used.
In this question, you will write several functions on usemaps, using two representations, a
standard list-of-pairs representation and a functional representation. In each case, we will
give you the representation, and the definition of emptyusemap, and you will have to define
three functions:

• adduse adds an additional integer to the list associated with a given variable, e.g.

let m1 = [("a", [4])];;
let m2 = adduse "b" 4 m1;; // returns [("a", [4]); ("b", [4])]
let m3 = adduse "a" 5 m2;; // returns [("a", [5; 4]); ("b", [4])]

• fetch is a simple fetch operation on these tables:

fetch "a" m3;; // returns [5; 4]

• removeuses “zeroes out” the uses of a variable, that is, it replaces the list of uses
associated with a given variable by the empty list:

let m4 = removeuses "a" m3;; // returns [("a", []); ("b", [4])]

(a) (6 pts) Define the three functions using the list-of-pairs representation:

type usemap = (string * (int list)) list
let emptyusemap = []

let rec adduse (x:string) (u:int) (m:usemap) : usemap =

let rec fetch (x:string) (m:usemap) : int list =

let rec removeuses (x:string) (m:usemap) : usemap =

(b) (6 pts) Now define the same functions, using the functional representation:

2

CS 421 Final Exam Name:

type usemap = string -> (int list)
let emptyusemap = fun s -> []

let rec adduse (x:string) (u:int) (m:usemap) : usemap =

let rec fetch (x:string) (m:usemap) : int list =

let rec removeuses (x:string) (m:usemap) : usemap =

(c) (5 pts) Given this abstract syntax for expressions:

exp = Int of int | Var of string | Add of exp * exp

write the function addexp: exp → int → usemap → usemap which updates a usemap
based on the variables in an expression. Specifically, addexp e i m modifies m by adding
i to the list associated with each variable occurring in e. (The idea is that i is an
integer identifying a statement that contains e, and the usemap is keeping track of all
the statements where each variable occurs.) For example:

let m = [("a", []); ("b", [4])]
addexp (Add(Var "a", Var "b")) 5 m;; // returns [("a", [5]); ("b", [5; 4])]

Don’t worry if addexp adds the line number more than once. Although we’ve illustrated
it using the list-of-pairs representation, your definition should just use the operations
defined in question 1, so it will work for either representation.

let rec addexp (e:exp) (n:int) (m:usemap) : usemap =

3

CS 421 Final Exam Name:

2. (10 pts) Consider this grammar: E → id | not E | E and E

The following two trees for the sentence “not x and y” shows that the grammar is ambigu-
ous:

(a) (8 pts) Show the shift-reduce parses for these two parse trees side-by-side. (Hint: they
have the same number of steps, and are identical until line 4.) We have given the first line;
recall that the effect of each action is shown on the following line.

Parse tree on left Parse tree on right
Action Stack Input Action Stack Input

1. Shift not x and y Shift not x and y

2.

3.

4.

5.

6.

7.

8.

9. Accept E eof Accept E eof

(b) (2 pts) If the tree on the right is the correct one (not has precedence over and), what
action should be taken when not is the token closest to the top of the stack and and is the
lookahead symbol?

4

CS 421 Final Exam Name:

3. (10 pts) Consider this grammar:

E → (E) F | id F
F → ε | E

(a) (5 pts) Calculate the FIRST sets for this grammar (remember for both FIRST and
FOLLOW sets, column 3 is identical to column 2 - that is how we know the calculation
is finished):

0 1 2 3

E {}

F {}

and FOLLOW sets:

0 1 2 3

E eof

F {}

(b) (5 pts) This grammar is LL(1): For the productions from E, the FIRST sets do not
overlap; and for the productions from F , FIRST(E) does not overlap with FOLLOW(F).
The top-down parser consists of mutually-recursive functions parseE and parseF, both
of type token list → token list. Fill in the code for parseE (with tokens LPAREN,
RPAREN, and IDENT); raise a SyntaxError where appropriate.

let rec parseE toklis = match toklis with

LPAREN::toklis’ ->

| IDENT::toklis’ ->

and parseF toklis = ... assume this is given ..

5

CS 421 Final Exam Name:

4. (10 pts) The evaluation rules for a subset of OCaml, in the substitution and environment
models, are given on the last page of this exam. You may tear off that sheet for reference.

We provide the outline of the evaluation of an expression (the same one) in each of the models;
you are to fill in the blanks, and, in the parentheses on the left, give the name of the rule being
used. We have included the first and last few lines of each evaluation. You may introduce
abbreviations for long expressions or environments, but be sure to show this very clearly. The
lengths of the blank lines is not significant, but their indentation level is.

(a) (5 pts) Evaluation in substitution model

(App) (fun a -> ((fun h -> h a) (fun b -> b+1))) 4 ⇓ 5
(Fun) fun a -> ((fun h -> h a) (fun b -> b+1))

⇓ fun a -> ((fun h -> h a) (fun b -> b+1))

(Const) 4 ⇓ 4
(App) (fun h -> h 4) (fun b -> b+1) ⇓ 5
(Fun) fun h -> h 4 ⇓ fun h -> h 4

()

()

()

()

()
(Const) 4 ⇓ 4
(Const) 1 ⇓ 1

(b) (5 pts) Evaluation in environment model. (Hint: you can use abbreviations ρ1 = {a 7→ 4,
h 7→< (fun b -> b+1) , {a 7→ 4} >} and ρ2 = {a 7→ 4, b 7→ 4}.)

(App) (fun a -> ((fun h -> h a) (fun b -> b+1))) 4, ∅ ⇓ 5
(Fun) fun a -> ((fun h -> h a) (fun b -> b+1)), ∅

⇓ <fun a -> ((fun h -> h a) (fun b -> b+1)), ∅ >
(Const) 4, ∅ ⇓ 4
(App) (fun h -> h a) (fun b -> b+1), {a 7→ 4} ⇓ 5
(Fun) fun h -> h a, {a 7→ 4} ⇓ <(fun h -> h 4), {a 7→ 4} >

()

()

()

()

()
(Var) b, ρ2 ⇓ 4
(Const) 1, ρ2 ⇓ 1

6

CS 421 Final Exam Name:

5. (4 pts) To add pairs, we add two new expressions: (e, e′) and a pattern-matching version of
let: let (x,y) = e in e′. In this version of let, e should evaluate to a value of the form
(v, v′), where v and v′ are both values. We give the rule for pairs in each model; give the
rules for this version of let in each model:

(a) (2 pts) Substitution model

(Pair) (e, e′) ⇓ (v, v′)
e ⇓ v
e′ ⇓ v′

(PairLet) let (x, y) = e in e′ ⇓ v

(b) (2 pts) Environment model

(Pair) (e, e′), ρ ⇓ (v, v′)
e, ρ ⇓ v
e′, ρ ⇓ v′

(PairLet) let (x, y) = e in e′, ρ ⇓ v

7

CS 421 Final Exam Name:

6. (7 pts) To deal with assignable (ref) values in OCaml correctly, we need to adopt the two-
level state model that we used for MiniJava. Recall that we first add a type of value called a
“location” to the set of values that can appear in the environment (locations are written as
`), and then we add a persistent store (a map from locations to values, which we call η) to the
state. Evaluations may change the store (not the environment), so it needs to be “threaded”
through the evaluation. Therefore, evaluation judgments have the form:

e, (ρ, η) ⇓ v, η′

meaning that when e is evaluated in environment ρ and store η, it produces a value v, and
changes the store to η′. Here are some of the evaluation rules in this model (we diverge from
OCaml only in that an assignment e:= e′ returns the value of e′):

Two-level state model

(Const) Int i, (ρ,η) ⇓ Int i, η (Var) a, (ρ,η) ⇓ ρ(a), η

(Assign) e := e′, (ρ,η) ⇓ v, η′′[` 7→ v]
e, (ρ,η) ⇓ `, η′

e′, (ρ,η′) ⇓ v, η′′

(Ref) ref e, (ρ,η) ⇓ `, η′[` 7→ v]
(` a location not used in η′)

e, (ρ,η) ⇓ v, η′

(Fun) Fun(a,e), (ρ,η) ⇓ <Fun(a,e), ρ >, η (Deref) !e, (ρ,η) ⇓ η′(`), η′

e, (ρ,η) ⇓ `, η′

Give the evaluation rules for application, let, and sequence. In each case, we have filled in the
lines for the appropriate number of sub-evaluations. Applications have three sub-evaluations:
the function, the argument, and the body of the function, which we’ve called e′′.

(App) e e′, (ρ,η) ⇓ v , η′′′

e, ⇓

e′, ⇓

e′′, ⇓

(Let) let x=e in e′, (ρ,η) ⇓ v′ , η′′

e, ⇓

e′, ⇓

(Seq) e; e′, (ρ,η) ⇓ v′, η′′

e, ⇓

e′, ⇓

8

CS 421 Final Exam Name:

7. (9 pts) FORTRAN has a control structure called the arithmetic if, which branches to one of
three statements depending upon whether the value of an integer expression is positive, neg-
ative or zero. In this question, you will write a compilation scheme for this control structure.

Our version of the arithmetic if is: arithif (e) Sneg Szero Spos. It evaluates e and executes
one of the three statements, depending on whether e is negative, zero, or positive.

Recall the basic compilation schemes for statements and expressions:

(Stmt) S, m il, m′ — S compiles to instruction list il, starting at location m and ending
at m′ − 1.

(Expr) e, loc il — e compiles to instruction list il, which places the value of e in loc.

You will need the following instructions: LOADIMM(loc, k) (load k into location loc). EQUAL(tgt,
loc1, loc2) compares the values in locations loc1 and loc2 and places the resulting truth value
(1 or 0) into location tgt. LESSTHAN(tgt, loc1, loc2) is similar to EQUAL, but tests whether
the contents of loc1 are (strictly) less than the contents of loc2. JUMP(m) jumps to code
location m. CJUMP(loc, m, m′) jumps to m if the value in loc is 1, or m′ if it is zero.

The compiled version of arithif starts with e, and then has five instructions to jump to the
correct one of the three statements. We have filled in the first one and then left four blanks.
The instructions you insert will need to store values in temporary locations; you can freely
use names t1, t2, etc. for temporary locations.

arithif (e) Sneg Szero Spos, m

il @ [LOADIMM t1,0; ;

;

;

]

@ il1 @ []

@ il2 @ [] @ il3, m′′′

e, loc il

Sneg, il1, m′

Szero, il2, m′′

Spos, il3, m′′′

9

CS 421 Final Exam Name:

8. (7 pts) Fill in the virtual function tables (v-tables) for each of the following classes, using
the format shown for the first one. Remember that the order of functions in a v-table is
important.

class A {
String f() { ... }
}

f in A

class B extends A {
double g() { ... }
}

class C extends B {
double g() { ... }
String f() { ... }
}

class D extends C {
String f() { ... }
String h() { ... }
}

10

CS 421 Final Exam Name:

9. (10 pts) This question concerns the higher-order library function fold right:

let rec fold_right f lis z = if lis=[] then z else f (hd lis) (fold_right f (tl lis) z)

which has type (α→ β → β) → α list → β → β.

Recall that zip takes two lists of the same length, and returns a list of pairs of the correspond-
ing elements from the two lists, e.g. zip ["a";"b";"c"] [1;2;3] = [("a",1);("b",2);("c",3)].

(a) (2 pts) The function pos names: string list * int list → string list selects from its first
argument those strings where the corresponding integer in the second argument is non-
negative:

pos_names ["a";"b";"c"] [1;-2;3] returns: ["a"; "c"]

Fill in the second argument of fold right to get a definition of pos_names:

let pos_names lis1 lis2 = let zipped = zip lis1 lis2 in

fold_right () zipped []

(b) (2 pts) Similarly, write sum of diffs, which sums the differences of corresponding ele-
ments in two lists: sum_of_diffs [10; 20; 30] [4;5;7] returns 44 (6 + 15 + 23).

let sum_of_diffs lis1 lis2 = let zipped = zip lis1 lis2 in

fold_right () zipped 0

(c) (2 pts) We can also solve this by giving a two-list version of fold right:

let rec fold_right2 f lis1 lis2 z =
if lis1=[] then z

else f (hd lis1) (hd lis2) (fold_right2 f (tl lis1) (tl lis2) z)

Give the type of fold right2:

(d) (4 pts) Define pos names and sum of diffs using fold right2 (without zipping the
arguments):

let pos_names lis1 lis2 =

fold_right2 () lis1 lis2 []

let sum_of_diffs lis1 lis2 =

fold_right2 () lis1 lis2 0

11

CS 421 Final Exam Name:

10. (8 pts) The explicitly-typed polymorphic type system for OCaml is given on the last page of
this exam. You may tear off that sheet so you can refer to it more easily.

(a) (6 pts) Give the complete proof of the following judgment. We have filled in the first
few lines. (The lengths of the lines are not significant, but their indentation level is.)
In the parentheses on the left, enter the name of the rule used to prove that judgment.
(Hint: You will eventually need type environment {g : ∀α. (int → α) → α}, which you
can abbreviate as Γ1.)

(Let) ∅ ` let g:((int->alpha)->alpha) = fun f:(int->alpha) -> f 0 : int
in g[(int->int)->int] (fun x:int -> x+1) : int

(Fun) ∅ ` fun f:(int->alpha) -> f 0 : (int→ α)→ α
(App) {f : int→ α} ` f 0 : α
(Var) {f : int→ α} ` f : int→ α
(Const) {f : int→ α} ` 0 : int

()

()

()

()

()

()

(b) (2 pts) In question 5, we introduced a let expression that does pattern-matching for
pairs: let (x,y) = e in e′. We have given the typing rule for pairs; give the typing
rule for let expressions:

(Pair) Γ ` (e1, e2) : τ1 ∗ τ2
Γ ` e1 : τ1
Γ ` e2 : τ2

(PairLet) Γ ` let (x,y) = e in e′ : τ

12

CS 421 Final Exam Name:

11. (8 pts) Give loop invariants and termination functions for the following loops. (You do not
have to prove anything.)

(a) (4 pts)

y > 0 ∧ e = y ∧ p = 1 {
while(e > 0) { p = p * x; e = e - 1; }

} p = xy

Invariant:

Termination function:

(b) (4 pts) Here, a is an n–element array:

max = 0 ∧ i = 1 ∧ n > 1 {
while(i != n) { if (a[i] > a[max]) max = i;

i = i+1; }
} ∀0 ≤ j < n. a[max] ≥ a[j]

Invariant:

Termination function:

13

CS 421 Final Exam Name:

Substitution model

(Const) Int x ⇓ Int x (Fun) Fun(a,e) ⇓ Fun(a,e)

(δ) e op e′ ⇓ v OP v′

e ⇓ v
e′ ⇓ v′

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)
e′ ⇓ v′

e′′[v′/a] ⇓ v

Environment model

(Const) Int i, ρ ⇓ Int i (Var) a, ρ ⇓ ρ(a)

(δ) e op e′, ρ ⇓ v OP v′

e, ρ ⇓ v
e′, ρ ⇓ v′

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >
e′, ρ ⇓ v′

e′′, ρ′[a 7→ v′] ⇓ v

(Fun) Fun(a,e), ρ ⇓ <Fun(a,e), ρ >

Explicitly-typed, polymorphic type system

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)
(Γ(a) a type)

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e ⊕ e′ : τ ′′

Γ ` e : τ
Γ ` e′ : τ ′

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(True) Γ ` true : bool

(False) Γ ` false : bool

(PolyVar) Γ ` a[τ] : τ
where τ ≤ Γ(a)
(Γ(a) a type scheme)

(Let) Γ ` let a:τ = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

14

